- 時間:2022-12-27 02:29:05
- 小編:ZTFB
- 文件格式 DOC
每個人都曾試圖在平淡的學習、工作和生活中寫一篇文章。寫作是培養(yǎng)人的觀察、聯(lián)想、想象、思維和記憶的重要手段。寫范文的時候需要注意什么呢?有哪些格式需要注意呢?這里我整理了一些優(yōu)秀的范文,希望對大家有所幫助,下面我們就來了解一下吧。
有關勾股定理小論文(精)一
我說課的題目是華師版八年級上冊第十四章第一節(jié)第一課時《勾股定理》。
如果說數(shù)學思想是解決數(shù)學問題的一首經(jīng)典老歌,那么本節(jié)課蘊含的由特殊到一般的思想、數(shù)學建模的思想、轉(zhuǎn)化的思想就是歌中最為活躍的音符!本節(jié)的內(nèi)容是在學習了二次根式之后的教學,是在學生已經(jīng)掌握了直角三角形的有關性質(zhì)的基礎上進行的后繼學習,是中學數(shù)學幾個重要定理之一。它揭示了直角三角形三條邊之間的數(shù)量關系,是解直角三角形的主要根據(jù)之一,是解決四邊形、圓等知識的靈魂,在實際生活中有著極其廣泛的應用。
勾股定理的發(fā)現(xiàn)、驗證和應用蘊含著豐富的文化價值,在理論上占有重要地位,因此本節(jié)在教材中起著承前啟后的橋梁作用。
新課標下的數(shù)學教學不僅是知識的教學,更應注重能力的培養(yǎng)及情感的教育,因此,根據(jù)本節(jié)在教學中的地位和作用,結合初二學生不愛表現(xiàn)、好靜不好動的特點,我確定本節(jié)教學目標如下:
1、探索并利用拼圖證明勾股定理。
2、利用勾股定理解決簡單的數(shù)學問題。
3、感受數(shù)學文化,體會解決問題方法的多樣性和數(shù)形結合的思想。
本著課標的要求,在吃透教材的基礎上,我確定本節(jié)的教學重點、難點、關鍵如下:
勾股定理的證明和簡單應用是本節(jié)的重點,用拼圖的方法證明勾股定理是難點,而解決難點的關鍵是充分利用圖形面積的各種表示方法構造恒等式。
為了講清重點、突破難點、抓住關鍵,使學生達到預定目標,我對教法和學法分析如下:
新課程標準強調(diào)要從學生已有的經(jīng)驗出發(fā),最大限度的激發(fā)學生學習積極性,新課程下的數(shù)學教師更應是學生學習活動的組織者、引導者、合作者,因此,鑒于教材的重點和初二學生的認知水平,我以學生充分預習為前提,以學生的動手操作、講解為中心,讓學生親歷親為,體會做數(shù)學的過程,激發(fā)學生的探索興趣,使課堂活躍起來,提高課堂效率。運用觀察法、歸納法、引導發(fā)現(xiàn)法、討論法等多種教學方法相結合的形式,讓學生充分展示預習成果,體驗成功的快樂,為終身學習和發(fā)展打下堅實的基礎。為了增大課堂容量、給學生創(chuàng)設高效的數(shù)學課堂,給學生提供足夠從事數(shù)學活動的時間,以導學案的形式、運用多媒體輔助教學。
:
學法是學生再生知識的法寶,為了把學生學習過程當作認知事物的過程來解決,教學中我首先引導學生先動手操作,再合作交流,培養(yǎng)學生良好的學習品質(zhì)和與人合作的能力;接下來,我讓學生獨立思考,點撥學生用特殊到一般的思想大膽償試,水到渠成的突出勾股定理的探索這一重點,然后通過學生展示成果讓學生抓住用不同的方式拼出圖形,從而用不同的方式表示圖形面積建立恒等式這一關健,以自己拼圖操作、講解展示預習成果突破定理證明這一難點,指導學生嚴謹、合理的書寫格式,培養(yǎng)學生的邏輯思維能力和語言表達能力。
為了充分調(diào)動學生的學習積極性,創(chuàng)設優(yōu)化高效的數(shù)學課堂,我以導學案的方式循序見進的設計教學流程。
以學生必讀課本48—52頁,選讀課本55、56頁的課前預習為前提,共分四個環(huán)節(jié)來進行教學
1、勾股定理的探究:讓學生歷經(jīng)量一量、算一算、想一想的由特殊到一般的數(shù)學思想引導好學生課前預習,再以檢查預習成果的形式為新知的探究作好鋪墊。
2、勾股定理的證明:以學生拼圖展示、講解預習成果的形式完成對定理的證明。
3、勾股定理的應用:以課堂練習、學生個性補充和老師適當?shù)膫€性化追加的形式實現(xiàn)對定理的靈活應用。
4、學后反思:以學生小結的形式引導學生從知識、情感兩方面實現(xiàn)對本節(jié)內(nèi)容的鞏固與升華。
為了給學生營造一個和諧、民主、平等而高效的數(shù)學課堂,我以新課程標準的基本理念和總體目標為指導思想,面向全體學生,選擇適當?shù)钠瘘c和方法,充分發(fā)揮學生的主體地位與教師主導作用相統(tǒng)一的原則。教學中注重學生的動手操作能力的培養(yǎng),化繁為簡,化抽象為直觀。例如我以展示預習成果為主線,以學生動手操作、講解等直觀方式代替老師畫圖、剪圖、講評費時費力的方式,既讓每個學生都能積極的參與進來,培養(yǎng)學生的語言表達能力、邏輯推理能力,又達到了直觀高效的效果。
教學中我注重人文環(huán)境的創(chuàng)設,使數(shù)學課堂充滿親切、民主的氣氛,例如整節(jié)課我以學生的操作、展示、講解、個性補充為主,拉近了數(shù)學與學生的距離,激發(fā)了學生的學習興趣;為了使不同的學生得到不同的發(fā)展,人人學有價值的數(shù)學,在教學中我創(chuàng)造性的使用教材,在不改變例題的本意為前提,創(chuàng)設身邊暖房工程為情境,體現(xiàn)數(shù)學的生活化;以一題多變、中考題改編等形式進行練習題的層層深入,體現(xiàn)數(shù)學的變化美。
以學生個性補充的形式促進課堂新的生成,最大限度的培養(yǎng)學生創(chuàng)新思維,使不同的人在數(shù)學上有不同的發(fā)展。本節(jié)課既做到了課程的開放,為充分發(fā)揮學生聰明智慧和創(chuàng)造性的思維提供了空間,又創(chuàng)設了具有獨特教學風格的作文式數(shù)學課堂。而多媒體教學的引入更為學生提供了廣闊的思考空間和時間;同時,我注重對學生進行數(shù)學文化的薰陶和數(shù)學思想的滲透,注重美育、德育與教育的三統(tǒng)一,如小結時由“勾股樹”到“智慧樹”的希望寄語。
有關勾股定理小論文(精)二
本課時是華師大版八年級(上)數(shù)學第14章第二節(jié)內(nèi)容,是在掌握勾股定理的基礎上對勾股定理的應用之一。 勾股定理是我國古數(shù)學的一項偉大成就。勾股定理為我們提供了直角三角形的三邊間的數(shù)量關系,它的逆定理為我們提供了判斷三角形是否屬于直角三角形的依據(jù),也是判定兩條直線是否互相垂直的一個重要方法,這些成果被廣泛應用于數(shù)學和實際生活的各個方面。教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際分析,使學生獲得較為直觀的印象,通過聯(lián)系和比較,了解勾股定理在實際生活中的廣泛應用。 據(jù)此,制定教學目標如下:
1、知識和方法目標:通過對一些典型題目的思考,練習,能正確熟練地進行勾股定理有關計算,深入對勾股定理的理解。
2、過程與方法目標:通過對一些題目的探討,以達到掌握知識的目的。
3、情感與態(tài)度目標:感受數(shù)學在生活中的應用,感受數(shù)學定理的美。
教學重點:勾股定理的應用。
教學難點:勾股定理的正確使用。
教學關鍵:在現(xiàn)實情境中捕抓直角三角形,確定好直角三角形之后,再應用勾股定理。
1、以自學輔導為主,充分發(fā)揮教師的主導作用,運用各種手段激發(fā)學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程。
2、切實體現(xiàn)學生的主體地位,讓學生通過觀察,分析,討論,操作,歸納理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。
3、通過演示實物,引導學生觀察,操作,分析,證明,使學生獲得新知的成功感受,從而激發(fā)學生鉆研新知的欲望。
本節(jié)內(nèi)容的教學主要體現(xiàn)在學生的動手,動腦方面,根據(jù)學生的認知規(guī)律和學習心理,教學程序設置如下:
勾股定理的內(nèi)容是什么? 勾股定理揭示了直角三角形三邊之間的關系,今天我們來學習這個定理在實際生活中的應用。
1、如圖所示,有一個圓柱,它的高ab等于4厘米,底面周長等于20厘米,在圓柱下底面的a點有一只螞蟻,它想吃到上底面與a點相對的c點處的食物,沿圓柱側面爬行的最短路線是多少?(課本p57圖14.2.1)
①學生取出自制圓柱,,嘗試從a點到c點沿圓柱側面畫出幾條路線。思考:那條路線最短?
②如圖,將圓柱側面剪開展成一個長方形,從a點到c點的最短路線是什么?你畫得對嗎?
③螞蟻從a點出發(fā),想吃到c點處的食物,它沿圓柱側面爬行的最短路線是什么?
思路點撥:引導學生在自制的圓柱側面上尋找最短路線;提醒學生將圓柱側面展開成長方形,引導學生觀察分析發(fā)現(xiàn)“兩點之間的所有線中,線段最短”。 學生在自主探索的基礎上興趣高漲,氣氛異常的活躍,他們發(fā)現(xiàn)螞蟻從a點往上爬到b點后順著直徑爬向c點爬行的路線是最短的!我也意外的發(fā)現(xiàn)了這種爬法是正確的,但是課本上是順著側面往上爬的,我就告訴學生:“課本中的圓柱體是沒有上蓋的”。只有這樣課本上的解答才算是完全正確的。例2.(課本p58圖14.2.3)
思路點撥:廠門的寬度是足夠的,這個問題的關鍵是觀察當卡車位于廠門正中間時其高度是否小于ch,點d在離廠門中線0.8米處,且cd⊥ab, 與地面交于h,尋找出rt△ocd,運用勾股定理求出2.3m,cd= = =0.6,ch=0.6+2.3=2.92.5可見卡車能順利通過 。詳細解題過程看課本 引導學生完成p58做一做。
1、課本p58練習第1,2題。
2、探究: 一門框的尺寸如圖所示,一塊長3米,寬2.2米的薄木板是否能從門框內(nèi)通過?為什么?
直角三角形在實際生活中有更為廣泛的應用希望同學們能緊緊抓住直角三角形的性質(zhì),學透勾股定理的具體應用,那樣就能很輕松的解決現(xiàn)實生活中的許多問題,達到事倍功半的效果。
課本p60習題14.2第1,2,3題。
有關勾股定理小論文(精)三
《垂徑定理》九年級數(shù)學上冊教學反思
“垂徑定理”是圓的重要性質(zhì)之一,也是全章的基礎之一,在整章中占有舉足輕重的地位,是今后研究圓與其他圖形位置關系和數(shù)量關系的基礎,這些知識在日常生活和生產(chǎn)中有廣泛的應用。由于垂徑定理及其推論反映了圓的重要性質(zhì),是證明線段相等、角相等、垂直關系的重要依據(jù),因此,它是整節(jié)書的重點及難點。
對本節(jié)課的教學我有以下幾點反思:
1、本節(jié)課主要有兩方面的內(nèi)容:一是圓的軸對稱性,二是垂徑定理及其推論。開始以趙州橋的問題引入課題,帶著問題進行學習,學習有目標,圓的軸對稱性主要是通過動手操作得出結論,圓是軸對稱圖形,根據(jù)軸對稱性進一步研究圓中相等的弦,弧得出垂徑定理及其推論。利用此定理再去解決趙州橋問題,每一個環(huán)節(jié)都是環(huán)環(huán)相扣,不是孤立存在的。
2.在數(shù)學教學中,語言的嚴密性,邏輯性很重要的,而我在課堂上,尤其是知識點的聯(lián)系方面的引導詞,結論的表述,更加需要再努力鉆研.今后我將在這方面下工夫,在去聽其他數(shù)學老師的課時,要注意其他老師在知識點同知識點之間的過渡語句.
3在教案設計方面,在時間上把握得不夠準確。有點前松后緊。前面在復習的部分應該加些關于勾股定理的計算的題目,使學生在后面解直角三角形時能夠更加快,更熟練;在多媒體中,題目的梯度設計雖然很好但時間緊練習題量太小。
4,其實這節(jié)課還有個作圖思想要灌輸給學生,即教學生如果見到弦心距,弦,那么直接連半徑構成直角三角形;如果就是只知道一條弦的題目,就要連弦心距都要作出來,應加強兩種題目的訓練。.
通過反思這一課的課堂教學,我認識到要善于處理好教學中知識傳授與能力培養(yǎng)的關系,巧妙地引導學生解決生活中的數(shù)學問題。不斷地激發(fā)學生的學習積極性與主動性,培養(yǎng)學生思維能力、想象力和創(chuàng)新精神,使每個學生的身心都能得到充分的發(fā)展。這些問題給了我一個今后的努力的方向.在今后的教學中,我會更加努力。
有關勾股定理小論文(精)四
勾股定理是九年制義務教育教科書八年級下冊第十七章的內(nèi)容,是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關系。它在數(shù)學的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。
針對八年級學生的知識結構、心理特征及學生的實際情況,可選擇引導探索法,由淺入深,由特殊到一般地提出問題。引導學生自主探索,合作交流,這種教學理念反映了時代精神,有利于提高學生的思維能力,能有效地激發(fā)學生的思維積極性,借此培養(yǎng)學生動手、動腦、動口的能力,使學生真正成為學習的主體。
(一)知識與技能
1、體驗勾股定理的探索過程,會運用勾股定理解決簡單的問題。
(二)過程與方法
1、讓學生經(jīng)歷用面積法探索勾股定理的過程,體會數(shù)形結合的思想,滲透觀察、歸納、猜想、驗證的數(shù)學方法,體驗從特殊到一般的邏輯推理過程。
(三)情感態(tài)度與價值觀
1、通過了解勾股定理的歷史,激發(fā)學生熱愛祖國,熱愛祖國悠久文化的思想,激勵學生發(fā)奮學習。
2、讓學生體驗自己努力得到結論的成就感,體驗數(shù)學充滿了探索和創(chuàng)造,感受數(shù)學之美,探究之趣。
重點:會用勾股定理求直角三角形的邊長
難點:勾股定理的探索過程
多媒體課件
6.1第一學時
教學活動
活動1
【導入】欣賞圖片,了解歷史
2002年在北京召開了第24屆國際數(shù)學家大會,它是最高水平的全球性數(shù)學科學學術會議,被譽為數(shù)學界的“奧運會”.這就是本屆大會的會徽的圖案.
(1)你見過這個圖案嗎?
(2)你聽說過“勾股定理”嗎?
學生活動:學生觀察圖片,發(fā)表見解。
資源準備:教師演示多媒體課件
設計意圖:從現(xiàn)實生活中提出“趙爽弦圖”,為學生能夠積極主動地投入到探索活動創(chuàng)設情境,激發(fā)學生學習熱情,同時為探索勾股定理提供背景材料。
活動2【講授】探索勾股定理
探究一:探索直角三角形三邊的特殊關系:
(1)畫一直角三角形,使其兩邊滿足下面的條件,測量第三邊的長度,完成下表;
直角三角形1
直角邊一a=3
直角邊二b=4
斜邊c=?
猜想三邊關系滿足關系:
直角三角形2
直角邊一a=5
直角邊二b=?
斜邊c=13
猜想三邊關系滿足關系:
(2)猜想:直角三角形的三邊關系為
探究二:如果下圖中小方格的邊長是1,觀察圖形,完成下表,并與同學交流:你是怎樣得到的?
思考:每個圖中正方形的面積與三角形的邊長有何關系?歸納得出勾股定理。
勾股定理:
直角三角形等于
幾何語言表述:
如圖,在rtδabc中,c=90°,則:
若bc=a,ac=b,ab=c,則上面的定理可以表示為:
學生活動:在獨立探究的基礎上,學生分組交流。
資源準備:教師演示多媒體課件
設計意圖:滲透從特殊到一般的數(shù)學思想。為學生提供參與數(shù)學活動的時間和空間,發(fā)揮學生的主體作用;培養(yǎng)學生的類比遷移能力及探索問題的能力,使學生在相互欣賞、爭辯、互助中得到提高。
活動3【講授】證明勾股定理
是不是所有的直角三角形都有這樣的特點呢?這就需要我們對一個一般的直角三角形進行證明.到目前為止,對這個命題的證明方法已有幾百種之多.下面,我們就來看一看我國數(shù)學家趙爽是怎樣證明這個命題的。
(1)以直角三角形abc的兩條直角邊a、b為邊作兩個正方形.你能通過剪、拼把它拼成弦圖的樣子嗎?
(2)面積分別怎樣表示?它們有什么關系呢?
例1:已知,在△abc中,∠c=90°,∠a、∠b、∠c的對邊
為a、b、c。求證:a2+b2=c2。
分析:
⑴讓學生準備多個三角形模型,最好是有顏色的吹塑紙,
讓學生拼擺不同的形狀,利用面積相等進行證明。
⑵拼成如圖所示,其等量關系為:
4s△+s小正=s大正
2ab+(b-a)2=c2
化簡可證
學生活動:學生在獨立思考的基礎上以小組為單位,動手拼接。
資源準備:教師演示多媒體課件
設計意圖:通過拼圖活動,調(diào)動學生思維的積極性,鍛煉學生的動手實踐能力,為學生提供從事數(shù)學活動的機會,建立初步的空間觀念,發(fā)展形象思維。通過對定理的證明,讓學生確信定理的正確性。
活動4【練習】簡單應用勾股定理解題
1、求下圖中字母所代表的正方形的面積
2、求出下列各圖中x的值。
3、如圖所示,強大的臺風使得一根旗桿在離地面9米處折斷倒下,旗桿頂部落在離旗桿底部12米處。旗桿折斷之前有多高?
4、如圖,點c是以ab為直徑的半圓上一點,∠acb=90°,ac=3,bc=4,則圖中陰影部分的面積是多少?
學生活動:學生獨立思考完成
設計意圖:教師利用學生已有的知識創(chuàng)設問題情境,有針對性地引導學生進行練習,為學習勾股定理在實際生活中的應用做好鋪墊。
活動5【作業(yè)】總結反思,布置作業(yè)
1、本節(jié)課你有哪些收獲?
2、還有哪些疑問?
3、作業(yè):略
學生活動:學生歸納、總結談感受
設計意圖:通過小結能為學生從能力、情感、態(tài)度等方面關注學生對課堂整體感受,在輕松愉快的氣氛中體會收獲的喜悅。
活動6【講授】板書設計
勾股定理
一、定理:如果直角三角形的兩直角邊長分別為a,b,
斜邊為c,那么
二、證明:略
三、應用:
活動7【作業(yè)】教學反思
本節(jié)課涉及了大量的有關勾股定理的背景知識,學生可以感受到勾股定理所蘊含的濃郁的數(shù)學文化。教學中應聆聽學生發(fā)言,尊重學生發(fā)展。積極引導學生深挖細究,體現(xiàn)過程方法。教學中應著力激發(fā)學生學習數(shù)學的興趣,也要注重自主探索與合作交流,同時還要注意數(shù)學思想方法的滲透,為學生今后的發(fā)展拓展了空間。
17.1勾股定理
課時設計課堂實錄
17.1勾股定理
1第一學時教學活動活動1【導入】欣賞圖片,了解歷史
2002年在北京召開了第24屆國際數(shù)學家大會,它是最高水平的全球性數(shù)學科學學術會議,被譽為數(shù)學界的“奧運會”.這就是本屆大會的會徽的圖案.
(1)你見過這個圖案嗎?
(2)你聽說過“勾股定理”嗎?
學生活動:學生觀察圖片,發(fā)表見解。
資源準備:教師演示多媒體課件
設計意圖:從現(xiàn)實生活中提出“趙爽弦圖”,為學生能夠積極主動地投入到探索活動創(chuàng)設情境,激發(fā)學生學習熱情,同時為探索勾股定理提供背景材料。
活動2【講授】探索勾股定理
探究一:探索直角三角形三邊的特殊關系:
(1)畫一直角三角形,使其兩邊滿足下面的條件,測量第三邊的長度,完成下表;
直角三角形1
直角邊一a=3
直角邊二b=4
斜邊c=?
猜想三邊關系滿足關系:
直角三角形2
直角邊一a=5
直角邊二b=?
斜邊c=13
猜想三邊關系滿足關系:
(2)猜想:直角三角形的三邊關系為
探究二:如果下圖中小方格的邊長是1,觀察圖形,完成下表,并與同學交流:你是怎樣得到的?
思考:每個圖中正方形的面積與三角形的邊長有何關系?歸納得出勾股定理。
勾股定理:
直角三角形等于
幾何語言表述:
如圖,在rtδabc中,c=90°,則:
若bc=a,ac=b,ab=c,則上面的定理可以表示為:
學生活動:在獨立探究的基礎上,學生分組交流。
資源準備:教師演示多媒體課件
設計意圖:滲透從特殊到一般的數(shù)學思想。為學生提供參與數(shù)學活動的時間和空間,發(fā)揮學生的主體作用;培養(yǎng)學生的類比遷移能力及探索問題的能力,使學生在相互欣賞、爭辯、互助中得到提高。
活動3【講授】證明勾股定理
是不是所有的直角三角形都有這樣的特點呢?這就需要我們對一個一般的直角三角形進行證明.到目前為止,對這個命題的證明方法已有幾百種之多.下面,我們就來看一看我國數(shù)學家趙爽是怎樣證明這個命題的。
(1)以直角三角形abc的兩條直角邊a、b為邊作兩個正方形.你能通過剪、拼把它拼成弦圖的樣子嗎?
(2)面積分別怎樣表示?它們有什么關系呢?
例1:已知,在△abc中,∠c=90°,∠a、∠b、∠c的對邊
為a、b、c。求證:a2+b2=c2。
分析:
⑴讓學生準備多個三角形模型,最好是有顏色的吹塑紙,
讓學生拼擺不同的形狀,利用面積相等進行證明。
⑵拼成如圖所示,其等量關系為:
4s△+s小正=s大正
2ab+(b-a)2=c2
化簡可證
學生活動:學生在獨立思考的基礎上以小組為單位,動手拼接。
資源準備:教師演示多媒體課件
設計意圖:通過拼圖活動,調(diào)動學生思維的積極性,鍛煉學生的動手實踐能力,為學生提供從事數(shù)學活動的機會,建立初步的空間觀念,發(fā)展形象思維。通過對定理的證明,讓學生確信定理的正確性。
活動4【練習】簡單應用勾股定理解題
1、求下圖中字母所代表的正方形的面積
2、求出下列各圖中x的值。
3、如圖所示,強大的臺風使得一根旗桿在離地面9米處折斷倒下,旗桿頂部落在離旗桿底部12米處。旗桿折斷之前有多高?
4、如圖,點c是以ab為直徑的半圓上一點,∠acb=90°,ac=3,bc=4,則圖中陰影部分的面積是多少?
學生活動:學生獨立思考完成
設計意圖:教師利用學生已有的知識創(chuàng)設問題情境,有針對性地引導學生進行練習,為學習勾股定理在實際生活中的應用做好鋪墊。
活動5【作業(yè)】總結反思,布置作業(yè)
1、本節(jié)課你有哪些收獲?
2、還有哪些疑問?
3、作業(yè):略
學生活動:學生歸納、總結談感受
設計意圖:通過小結能為學生從能力、情感、態(tài)度等方面關注學生對課堂整體感受,在輕松愉快的氣氛中體會收獲的喜悅。
活動6【講授】板書設計
勾股定理
一、定理:如果直角三角形的兩直角邊長分別為a,b,斜邊為c,那么
二、證明:略
三、應用:
活動7【作業(yè)】教學反思
本節(jié)課涉及了大量的有關勾股定理的背景知識,學生可以感受到勾股定理所蘊含的濃郁的數(shù)學文化。教學中應聆聽學生發(fā)言,尊重學生發(fā)展。積極引導學生深挖細究,體現(xiàn)過程方法。教學中應著力激發(fā)學生學習數(shù)學的興趣,也要注重自主探索與合作交流,同時還要注意數(shù)學思想方法的滲透,為學生今后的發(fā)展拓展了空間。
有關勾股定理小論文(精)五
一、知識與技能
1.掌握直角三角形的判別條件。
2.熟記一些勾股數(shù)。
3.掌握勾股定理的逆定理的探究方法。
二、過程與方法
1.用三邊的數(shù)量關系來判斷一個三角形是否為直角三角形,培養(yǎng)學生數(shù)形結合的思想。
2.通過對rt△判別條件的研究,培養(yǎng)學生大膽猜想,勇于探索的創(chuàng)新精神。
三、情感態(tài)度與價值觀
1.通過介紹有關歷史資料,激發(fā)學生解決問題的愿望。
2.通過對勾股定理逆定理的探究;培養(yǎng)學生學習數(shù)學的興趣和創(chuàng)新精神。
教學重點探究勾股定理的逆定理,理解互逆命題,原命題、逆命題的有關概念及關系.理解并掌握勾股定理的逆定理,并會應用。
教學難點理解勾股定理的逆定理的推導。
教具準備多媒體課件。
一、創(chuàng)設問屬情境,引入新課
活動1
(1)總結直角三角形有哪些性質(zhì)。
(2)一個三角形,滿足什么條件是直角三角形?
設計意圖:通過對前面所學知識的歸納總結,聯(lián)想到用三邊的關系是否可以判斷一個三角形為直角三角形,提高學生發(fā)現(xiàn)反思問題的能力。
師生行為學生分組討論,交流總結;教師引導學生回憶。
本活動,教師應重點關注學生:①能否積極主動地回憶,總結前面學過的舊知識;②能否“溫故知新”。
生:直角三角形有如下性質(zhì):
(1)有一個角是直角;
(2)兩個銳角互余;
(3)兩直角邊的平方和等于斜邊的平方;
(4)在含30°角的直角三角形中,30°的角所對的直角邊是斜邊的一半。
師:那么,一個三角形滿足什么條件,才能是直角三角形呢?
生:有一個內(nèi)角是90°,那么這個三角形就為直角三角形。
生:如果一個三角形,有兩個角的和是90°,那么這個三角形也是直角三角形。
師:前面我們剛學習了勾股定理,知道一個直角三角形的兩直角邊a,b斜邊c具有一定的數(shù)量關系即a2+b2=c2,我們是否可以不用角,而用三角形三邊的關系來判定它是否為直角三角形呢?我們來看一下古埃及人如何做?
二、講授新課
活動2
問題:據(jù)說古埃及人用下圖的方法畫直角:把一根長蠅打上等距離的13個結,然后以3個結,4個結、5個結的長度為邊長,用木樁釘成一個三角形,其中一個角便是直角。
這個問題意味著,如果圍成的三角形的三邊分別為3、4、5。有下面的關系“32+42=52”。那么圍成的三角形是直角三角形。
畫畫看,如果三角形的三邊分別為2.5cm,6cm,6.5cm,有下面的關系,“2.52+62=6.52,畫出的三角形是直角三角形嗎?換成三邊分別為4cm、7.5cm、8.5cm.再試一試.
設計意圖:由特殊到一般,歸納猜想出“如果三角形三邊a,b,c滿足a2+b2=c2,那么這個三角形就為直免三角形的結論,培養(yǎng)學生動手操作能力和尋求解決數(shù)學問題的一般方法。
師生行為讓學生在小組內(nèi)共同合作,協(xié)手完成此活動。教師參與此活動,并給學生以提示、啟發(fā)。在本活動中,教師應重點關注學生:①能否積極動手參與;②能否從操作活動中,用數(shù)學語言歸納、猜想出結論;③學生是否有克服困難的勇氣。
生:我們不難發(fā)現(xiàn)上圖中,第(1)個結到第(4)個結是3個單位長度即ac=3;同理bc=4,ab=5.因為32+42=52。我們圍成的三角形是直角三角形。
生:如果三角形的三邊分別是2.5cm,6cm,6.5cm.我們用尺規(guī)作圖的方法作此三角形,經(jīng)過測量后,發(fā)現(xiàn)6.5cm的邊所對的角是直角,并且2.52+62=6.52.
再換成三邊分別為4cm,7.5cm,8.5cm的三角形,目標可以發(fā)現(xiàn)8.5cm的邊所對的角是直角,且也有42+7.52=8.52.
是不是三角形的三邊只要有兩邊的平方和等于第三邊的平方,就能得到一個直角三角形呢?
活動3下面的三組數(shù)分別是一個三角形的三邊長a,b,c
5,12,13;7,24,25;8,15,17。
(1)這三組效都滿足a2+b2=c2嗎?
(2)分別以每組數(shù)為三邊長作出三角形,用量角器量一量,它們都是直角三角形嗎?
設計意圖:本活動通過讓學生按已知數(shù)據(jù)作出三角形,并測量三角形三個內(nèi)角的度數(shù)來進一步獲得一個三角形是直角三角形的有關邊的.條件。
師生行為:學生進一步以小組為單位,按給出的三組數(shù)作出三角形,從而更加堅信前面猜想出的結論。
教師對學生歸納出的結論應給予解釋,我們將在下一節(jié)給出證明.本活動教師應重點關注學生:①對猜想出的結論是否還有疑慮;②能否積極主動的操作,并且很有耐心。
生:(1)這三組數(shù)都滿足a2+b2=c2。(2)以每組數(shù)為邊作出的三角形都是直角三角形。
師:很好,我們進一步通過實際操作,猜想結論。
命題2如果三角形的三邊長a,b,c滿足a2+b2=c2那么這個三角形是直角三角形。
同時,我們也進一步明白了古埃及人那樣做的道理.實際上,古代中國人也曾利用相似的方法得到直角,直至科技發(fā)達的今天。
有關勾股定理小論文(精)六
勾股定理是學生在已經(jīng)掌握了直角三角形的有關性質(zhì)的基礎上進行學習的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據(jù)之一,在實際生活中用途很大。教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進行運用。
據(jù)此,制定教學目標如下:
1、理解并掌握勾股定理及其證明。
2、能夠靈活地運用勾股定理及其計算。
3、培養(yǎng)學生觀察、比較、分析、推理的能力。
4、通過介紹中國古代勾股方面的成就,激發(fā)學生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。
教學重點:勾股定理的證明和應用。
教學難點:勾股定理的證明。
教法和學法是體現(xiàn)在整個教學過程中的,本課的教法和學法體現(xiàn)如下特點:
1、以自學輔導為主,充分發(fā)揮教師的主導作用,運用各種手段激發(fā)學生學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程。
2、切實體現(xiàn)學生的主體地位,讓學生通過觀察、分析、討論、操作、歸納,理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。
3、通過演示實物,引導學生觀察、操作、分析、證明,使學生得到獲得新知的成功感受,從而激發(fā)學生鉆研新知的欲望。
本節(jié)內(nèi)容的教學主要體現(xiàn)在學生動手、動腦方面,根據(jù)學生的認知規(guī)律和學習心理,教學程序設計如下:
(一)創(chuàng)設情境以古引新
1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形。如果勾是3,股是4,那么弦等于5。這樣引起學生學習興趣,激發(fā)學生求知欲。
2、是不是所有的直角三角形都有這個性質(zhì)呢?教師要善于激疑,使學生進入樂學狀態(tài)。
3、板書課題,出示學習目標。
(二)初步感知理解教材
教師指導學生自學教材,通過自學感悟理解新知。體現(xiàn)了學生的自主學習意識,鍛煉學生主動探究知識,養(yǎng)成良好的自學習慣。
(三)質(zhì)疑解難討論歸納
1、教師設疑或?qū)W生提疑。如:怎樣證明勾股定理?學生通過自學,中等以上的學生基本掌握,這時能激發(fā)學生的表現(xiàn)欲。
2、教師引導學生按照要求進行拼圖,觀察并分析;
(1)這兩個圖形有什么特點?
(2)你能寫出這兩個圖形的面積嗎?
(3)如何運用勾股定理?是否還有其他形式?
這時教師組織學生分組討論,調(diào)動全體學生的積極性,達到人人參與的效果,接著全班交流;先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發(fā)性的點撥。最后,師生共同歸納,形成一致意見,最終解決疑難。
(四)鞏固練習強化提高
1、出示練習,學生分組解答,并由學生總結解題規(guī)律。課堂教學中動靜結合,以免引起學生的疲勞。
2、出示例1學生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現(xiàn)鞏固練習,進一步提高學生運用知識的能力,對練習中出現(xiàn)的情況可采取互評、互議的形式,在互評互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學重點。
(五)歸納總結練習反饋
引導學生對知識要點進行總結,梳理學習思路。分發(fā)自我反饋練習,學生獨立完成。
本課意在創(chuàng)設愉悅和諧的樂學氣氛,優(yōu)化教學手段,借助電教手段提高課堂教學效率,建立平等、民主、和諧的師生關系。加強師生間的合作,營造一種學生敢想、感說、感問的課堂氣氛,讓全體學生都能生動活潑、積極主動地教學活動,在學習中創(chuàng)新精神和實踐能力得到培養(yǎng)。
有關勾股定理小論文(精)七
尊敬的各位考官:
大家好,我是x號考生,今天我說課的題目是《勾股定理的逆定理》。
新課標指出:數(shù)學課程要面向全體學生,適應學生個性發(fā)展的需要,使得人人都能獲得良好的數(shù)學教育,不同的人在數(shù)學上都能得到不同的發(fā)展。今天我將貫徹這一理念從教材分析、學情分析、教學過程等幾個方面展開我的說課。
首先來談一談我對教材的理解。
本節(jié)課選自人教版初中數(shù)學八年級下冊第十七章第二節(jié)《勾股定理的逆定理》,它是在學生掌握勾股定理及一般三角形性質(zhì)的基礎上進行教學的。應用前面學習的勾股定理及三角形全等證明逆定理是本節(jié)課的關鍵步驟,同時本節(jié)課又豐富了三角形的性質(zhì),是后面幾何問題的基礎理論性知識。
接下來談談學生的實際情況。本階段的學生已經(jīng)掌握了一定的基礎知識,處于由幾何內(nèi)容的初級向高級行進的過程。他們的幾何思維正在逐步形成和發(fā)展,對幾何題目具有一定的分析、想象、概括能力,具有對未知事物的新鮮感和探求欲。同時也要注意到學生能力的不成熟,教學中鼓勵與引導并重。
根據(jù)以上對教材的分析以及對學情的把握,我制定了如下教學目標:
(一)知識與技能
理解并掌握勾股定理的逆定理,會應用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系;理解原命題和逆命題的概念,知道二者的關系及二者真假性的關系。
(二)過程與方法
經(jīng)歷得出猜想、推理證明的過程,提升自主探究、分析問題、解決問題的能力。
(三)情感、態(tài)度與價值觀
體會事物之間的聯(lián)系,感受幾何的魅力。
在教學目標的實現(xiàn)過程中,教學重點是勾股定理的逆定理及其證明,教學難點是勾股定理的逆定理的證明。
為了突破重點,解決難點,順利達成教學目標,教學中我將主要采用小組討論、自主探究的教學方法,輔以適量的教師講解和引導,把課堂還給學生。
下面我將重點談談我對教學過程的設計。
(一)導入新課
課堂伊始,我采用復習舊知與創(chuàng)設情境相結合的導入方式。首先我會帶領學生復習勾股定理并明確其題設和結論,為后面提出逆命題、逆定理做鋪墊。接著提問學生如何畫直角三角形,學生很容易想到用三角尺或量角器。此時我會要求學生不能用繩子以外的工具,借助學生的困惑,給出古埃及人利用等長的3、4、5個繩結間距畫直角三角形的情境。以古埃及人所用方法中蘊含何道理為切入點引出課題。
通過這樣的導入方式,能夠帶領學生回顧上節(jié)課的內(nèi)容,為本節(jié)課奠定好基礎,同時用情境激發(fā)學生的好奇心和求知欲,更好地展開教學。
(二)講解新知
接下來是最重要的新授環(huán)節(jié)。
請學生思考3,4,5之間的關系,結合勾股定理的學習經(jīng)驗明確
出示數(shù)據(jù)2.5cm,6cm,6.5cm,請學生計算驗證數(shù)據(jù)滿足上述平方和關系,并畫出相應邊長的三角形檢驗是否為直角三角形。
學生活動:同桌兩人一組,將三邊換成其他滿足上述平方和關系的數(shù)據(jù),如4cm,7.5cm,8.5cm,畫出相應邊長的三角形檢驗是否為直角三角形。
在得到肯定結論后,引導學生基于以上例子大膽猜想得出命題。
您可能關注的文檔
- 2023年學習韓語的心得體會匯總(優(yōu)秀14篇)
- 生豬定點屠宰管理方案范文匯總 生豬定點屠宰場經(jīng)營方案(四篇)
- 2023年觀察日記睡蓮通用(實用19篇)
- 高二語文第三冊第四單元自讀課文美腿與丑腿教學設計 美腿與丑腿課文的基本觀點(三篇)
- 高中學生堅守夢想?yún)R總(精選11篇)
- 預防艾滋病宣傳班會(精選8篇)
- 龍門洞兩則游記散文簡短 龍門石窟美文游記(六篇)
- 2023年推薦運動會閉幕式總結(通用12篇)
- 太陽姑娘(模板11篇)
- 新時代教育方針的心得體會范文如何寫(匯總13篇)
- 學生會秘書處的職責和工作總結(專業(yè)17篇)
- 教育工作者分享故事的感悟(熱門18篇)
- 學生在大學學生會秘書處的工作總結大全(15篇)
- 行政助理的自我介紹(專業(yè)19篇)
- 職業(yè)顧問的職業(yè)發(fā)展心得(精選19篇)
- 法治興則民族興的實用心得體會(通用15篇)
- 教師在社區(qū)團委的工作總結(模板19篇)
- 教育工作者的社區(qū)團委工作總結(優(yōu)質(zhì)22篇)
- 體育教練軍訓心得體會(優(yōu)秀19篇)
- 學生軍訓心得體會范文(21篇)
- 青年軍訓第二天心得(實用18篇)
- 警察慰問春節(jié)虎年家屬的慰問信(優(yōu)秀18篇)
- 家屬慰問春節(jié)虎年的慰問信(實用20篇)
- 公務員慰問春節(jié)虎年家屬的慰問信(優(yōu)質(zhì)21篇)
- 植物生物學課程心得體會(專業(yè)20篇)
- 政府官員參與新冠肺炎疫情防控工作方案的重要性(匯總23篇)
- 大學生創(chuàng)業(yè)計劃競賽范文(18篇)
- 教育工作者行政工作安排范文(15篇)
- 編輯教學秘書的工作總結(匯總17篇)
- 學校行政人員行政工作職責大全(18篇)