手機(jī)閱讀

最新28.2.2解直角三角形教案(三篇)

格式:DOC 上傳日期:2023-03-14 19:49:17 頁(yè)碼:13
最新28.2.2解直角三角形教案(三篇)
2023-03-14 19:49:17    小編:zdfb

作為一名老師,常常要根據(jù)教學(xué)需要編寫(xiě)教案,教案是教學(xué)活動(dòng)的依據(jù),有著重要的地位。寫(xiě)教案的時(shí)候需要注意什么呢?有哪些格式需要注意呢?以下是小編為大家收集的教案范文,僅供參考,大家一起來(lái)看看吧。

28.2.2解直角三角形教案篇一

(一)知識(shí)教學(xué)點(diǎn)

使學(xué)生理解直角三角形中五個(gè)元素的關(guān)系,會(huì)運(yùn)用勾股定理,直角三角形的兩個(gè)銳角互余及銳角三角函數(shù)解直角三角形.

(二)能力訓(xùn)練點(diǎn)

通過(guò)綜合運(yùn)用勾股定理,直角三角形的兩個(gè)銳角互余及銳角三角函數(shù)解直角三角形,逐步培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力.

(三)德育滲透點(diǎn)

滲透數(shù)形結(jié)合的.數(shù)學(xué)思想,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣.

1.重點(diǎn):直角三角形的解法.

2.難點(diǎn):三角函數(shù)在解直角三角形中的靈活運(yùn)用.

3.疑點(diǎn):學(xué)生可能不理解在已知的兩個(gè)元素中,為什么至少有一個(gè)是邊.

(一)明確目標(biāo)

1.在三角形中共有幾個(gè)元素?

2.直角三角形abc中,∠c=90°,a、b、c、∠a、∠b這五個(gè)元素間有哪些等量關(guān)系呢?

(1)邊角之間關(guān)系

如果用表示直角三角形的一個(gè)銳角,那上述式子就可以寫(xiě)成.

(2)三邊之間關(guān)系

a2+b2=c2(勾股定理)

(3)銳角之間關(guān)系∠a+∠b=90°.

以上三點(diǎn)正是解直角三角形的依據(jù),通過(guò)復(fù)習(xí),使學(xué)生便于應(yīng)用.

(二)整體感知

教材在繼銳角三角函數(shù)后安排解直角三角形,目的是運(yùn)用銳角三角函數(shù)知識(shí),對(duì)其加以復(fù)習(xí)鞏固.同時(shí),本課又為以后的應(yīng)用舉例打下基礎(chǔ),因此在把實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題之后,就是運(yùn)用本課——解直角三角形的知識(shí)來(lái)解決的.綜上所述,解直角三角形一課在本章中是起到承上啟下作用的重要一課.

(三)重點(diǎn)、難點(diǎn)的學(xué)習(xí)與目標(biāo)完成過(guò)程

1.我們已掌握rt△abc的邊角關(guān)系、三邊關(guān)系、角角關(guān)系,利用這些關(guān)系,在知道其中的兩個(gè)元素(至少有一個(gè)是邊)后,就可求出其余的元素.這樣的導(dǎo)語(yǔ)既可以使學(xué)生大概了解解直角三角形的概念,同時(shí)又陷入思考,為什么兩個(gè)已知元素中必有一條邊呢?激發(fā)了學(xué)生的學(xué)習(xí)熱情.

2.教師在學(xué)生思考后,繼續(xù)引導(dǎo)“為什么兩個(gè)已知元素中至少有一條邊?”讓全體學(xué)生的思維目標(biāo)一致,在作出準(zhǔn)確回答后,教師請(qǐng)學(xué)生概括什么是解直角三角形?(由直角三角形中除直角外的兩個(gè)已知元素,求出所有未知元素的過(guò)程,叫做解直角三角形).

3.例題

例1在△abc中,∠c為直角,∠a、∠b、∠c所對(duì)的邊分別為a、b、c,且c=287.4,∠b=42°6′,解這個(gè)三角形.

解直角三角形的方法很多,靈活多樣,學(xué)生完全可以自己解決,但例題具有示范作用.因此,此題在處理時(shí),首先,應(yīng)讓學(xué)生獨(dú)立完成,培養(yǎng)其分析問(wèn)題、解決問(wèn)題能力,同時(shí)滲透數(shù)形結(jié)合的思想.其次,教師組織學(xué)生比較各種方法中哪些較好

完成之后引導(dǎo)學(xué)生小結(jié)“已知一邊一角,如何解直角三角形?”

答:先求另外一角,然后選取恰當(dāng)?shù)暮瘮?shù)關(guān)系式求另兩邊.計(jì)算時(shí),利用所求的量如不比原始數(shù)據(jù)簡(jiǎn)便的話(huà),最好用題中原始數(shù)據(jù)計(jì)算,這樣誤差小些,也比較可靠,防止第一步錯(cuò)導(dǎo)致一錯(cuò)到底.

例2在rt△abc中,a=104.0,b=20.49,解這個(gè)三角形.

在學(xué)生獨(dú)立完成之后,選出最好方法,教師板書(shū).

4.鞏固練習(xí)

解直角三角形是解實(shí)際應(yīng)用題的基礎(chǔ),因此必須使學(xué)生熟練掌握.為此,教材配備了練習(xí)針對(duì)各種條件,使學(xué)生熟練解直角三角形,并培養(yǎng)學(xué)生運(yùn)算能力.

說(shuō)明:解直角三角形計(jì)算上比較繁鎖,條件好的學(xué)校允許用計(jì)算器.但無(wú)論是否使用計(jì)算器,都必須寫(xiě)出解直角三角形的整個(gè)過(guò)程.要求學(xué)生認(rèn)真對(duì)待這些題目,不要馬馬虎虎,努力防止出錯(cuò),培養(yǎng)其良好的學(xué)習(xí)習(xí)慣.

(四)總結(jié)與擴(kuò)展

1.請(qǐng)學(xué)生小結(jié):在直角三角形中,除直角外還有五個(gè)元素,知道兩個(gè)元素(至少有一個(gè)是邊),就可以求出另三個(gè)元素.

2.出示圖表,請(qǐng)學(xué)生完成

abcab

1√√

2√√

3√b=acota√

4√b=atanb√

5√√

6a=btana√√

7a=bcotb√√

8a=csinab=ccosa√√

9a=ccosbb=csinb√√

10不可求不可求不可求√√

注:上表中“√”表示已知。

28.2.2解直角三角形教案篇二

(一)知識(shí)教學(xué)點(diǎn)

鞏固用三角函數(shù)有關(guān)知識(shí)解決問(wèn)題,學(xué)會(huì)解決坡度問(wèn)題。

(二)能力目標(biāo)

逐步培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力;滲透數(shù)形結(jié)合的數(shù)學(xué)思想和方法。

(三)德育目標(biāo)

培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí),滲透理論聯(lián)系實(shí)際的觀(guān)點(diǎn)。

1.重點(diǎn):解決有關(guān)坡度的實(shí)際問(wèn)題。

2.難點(diǎn):理解坡度的有關(guān)術(shù)語(yǔ)。

3.疑點(diǎn):對(duì)于坡度i表示成1∶m的形式學(xué)生易疏忽,教學(xué)中應(yīng)著重強(qiáng)調(diào),引起學(xué)生的重視。

1.創(chuàng)設(shè)情境,導(dǎo)入新課。

例 同學(xué)們,如果你是修建三峽大壩的工程師,現(xiàn)在有這樣一個(gè)問(wèn)題請(qǐng)你解決:如圖

水庫(kù)大壩的橫斷面是梯形,壩頂寬6m,壩高23m,斜坡ab的坡度i 1∶3,斜坡cd的坡度i=1∶2.5,求斜坡ab的坡面角α,壩底寬ad和斜坡ab的長(zhǎng)(精確到0.1m)。

同學(xué)們因?yàn)槟惴Q(chēng)他們?yōu)楣こ處煻湴粒瑵M(mǎn)腔熱情,但一見(jiàn)問(wèn)題又手足失措,因?yàn)檫B題中的術(shù)語(yǔ)坡度、坡角等他們都不清楚。這時(shí),教師應(yīng)根據(jù)學(xué)生想學(xué)的心情,及時(shí)點(diǎn)撥。

通過(guò)前面例題的教學(xué),學(xué)生已基本了解解實(shí)際應(yīng)用題的方法,會(huì)將實(shí)際問(wèn)題抽象為幾何問(wèn)題加以解決。但此題中提到的坡度與坡角的概念對(duì)學(xué)生來(lái)說(shuō)比較生疏,同時(shí)這兩個(gè)概念在實(shí)際生產(chǎn)、生活中又有十分重要的應(yīng)用,因此本節(jié)課關(guān)鍵是使學(xué)生理解坡度與坡角的意義。

28.2.2解直角三角形教案篇三

解直角三角形的應(yīng)用是在學(xué)生熟練掌握了直角三角形的解法的基礎(chǔ)上進(jìn)行教學(xué),它是把一些實(shí)際問(wèn)題轉(zhuǎn)化為解直角三角形的數(shù)學(xué)問(wèn)題,對(duì)分析問(wèn)題能力要求較高,這會(huì)使學(xué)生學(xué)習(xí)感到困難,在教學(xué)中應(yīng)引起足夠的重視。

將直角三角形中邊角關(guān)系作為已有信息,通過(guò)復(fù)習(xí)(輸入),使學(xué)生更牢固地掌握(貯存);再通過(guò)例題講解,達(dá)到信息處理;通過(guò)總結(jié)歸納,使信息優(yōu)化;通過(guò)變式練習(xí),使信息強(qiáng)化并能靈活運(yùn)用;通過(guò)布置作業(yè),使信息得到反饋。

⒈認(rèn)知目標(biāo):

⑴懂得常見(jiàn)名詞(如仰角、俯角)的意義

⑵能正確理解題意,將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)

⑶能利用已有知識(shí),通過(guò)直接解三角形或列方程的方法解決一些實(shí)際問(wèn)題。

⒉能力目標(biāo):培養(yǎng)學(xué)生分析問(wèn)題和解決問(wèn)題的能力,培養(yǎng)學(xué)生思維能力的靈活性。

⒊情感目標(biāo):使學(xué)生能理論聯(lián)系實(shí)際,培養(yǎng)學(xué)生的對(duì)立統(tǒng)一的觀(guān)點(diǎn)。

重點(diǎn):利用解直角三角形來(lái)解決一些實(shí)際問(wèn)題

難點(diǎn):正確理解題意,將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題。

⑴在學(xué)生對(duì)實(shí)際問(wèn)題的探究中,神經(jīng)興奮,思維活動(dòng)始終處于積極狀態(tài)

⑵在歸納、變換中激發(fā)學(xué)生思維的靈活性、敏捷性和創(chuàng)造性。

⑶重視學(xué)法指導(dǎo),以加速教學(xué)效績(jī)信息的順利體現(xiàn)。

投影儀、教具(一個(gè)銳角三角形,可變換圖2-圖7)

1、例1、例2圖形基本相同,但解法不同;這是為什么?學(xué)生的思維處于積極探求狀態(tài)中,從而激發(fā)學(xué)生學(xué)習(xí)的積極性和主動(dòng)性

2、將一個(gè)銳角三角形紙片通過(guò)旋轉(zhuǎn)、翻折等變換,使學(xué)生對(duì)問(wèn)題本質(zhì)有了更深的認(rèn)識(shí)

1.提問(wèn):如圖,在rt△abc中,∠c=90°。

⑴三邊a、b、c有什么關(guān)系?

⑵兩銳角∠a、∠b有怎樣的關(guān)系?

⑶邊與角之間有怎樣的關(guān)系?

2.提問(wèn):解直角三角形應(yīng)具備怎樣的條件:

注:直角三角形的邊角關(guān)系及解直角三角形的條件由投影給出,便于學(xué)生貯存信息

例1.(投影)在水平線(xiàn)上一點(diǎn)c,測(cè)得同頂?shù)难鼋菫?0°,向山沿直線(xiàn) 前進(jìn)20為到d處,再測(cè)山頂a的仰角為60°,求山高ab。

⑴引導(dǎo)學(xué)生將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題。

⑵分析:求ab可以解rt△abd和

rt△abc,但兩三角形中都不具備直接條件,但由于∠adb=2∠c,很容易發(fā)現(xiàn)ad=cd=20米,故可以解rt△abd,求得ab。

⑶解題過(guò)程,學(xué)生練習(xí)。

⑷思考:假如∠adb=45°,能否直接來(lái)解一個(gè)三角形呢?請(qǐng)看例2。

例2.(投影)在水平線(xiàn)上一點(diǎn)c,測(cè)得山頂a的仰角為30°,向山沿直線(xiàn)前進(jìn)20米到d處,再測(cè)山頂a的仰角為45°,求山高ab。

分析:

⑴在rt△abc和rt△abd中,都沒(méi)有兩個(gè)已知元素,故不能直接解一個(gè)三角形來(lái)求出ab。

⑵考慮到ab是兩直角三角形的直角邊,而cd是兩直角三角形的直角邊,而cd均不是兩個(gè)直角三角形的直角邊,但cd=bc=bd,啟以學(xué)生設(shè)ab=x,通過(guò) 列方程來(lái)解,然后板書(shū)解題過(guò)程。

解:設(shè)山高ab=x米

在rt△adb中,∠b=90°∠adb=45°

∵bd=ab=x(米)

在rt△abc中,tgc=ab/bc

∴bc=ab/tgc=√3(米)

∵cd=bc-bd

∴√3x-x=20 解得 x=(10√3+10)米

答:山高ab是(10√3+10)米

例2的圖開(kāi)完全一樣,如圖,均已知∠1、∠2及cd,例1中 ∠2=2∠1 求ab,則需解rt△abd例2中∠2≠2∠1求ab,則利用cd=bc-bd,列方程來(lái)解。

(投影)練習(xí)1:如圖,山上有鐵塔cd為m米,從地上一點(diǎn)測(cè)得塔頂c的仰角為∝,塔底d的仰角為β,求山高bd。

練習(xí)2:如圖,海岸上有a、b兩點(diǎn)相距120米,由a、b兩點(diǎn)觀(guān)測(cè)海上一保輪船c,得∠cab=60°∠cba=75°,求輪船c到海岸ab的距離。

練習(xí)3:在塔pq的正西方向a點(diǎn)測(cè)得頂端p的

仰角為30°,在塔的正南方向b點(diǎn)處,測(cè)得頂端p的仰角為45°且ab=60米,求塔高pq。

教師待學(xué)生解題完畢后,進(jìn)行講評(píng),并利用教具揭示各題實(shí)質(zhì):

⑴將基本圖形4旋轉(zhuǎn)90°,即得圖5;將基本圖形4中的rt△abd翻折180°,即可得圖6;將基本圖形4中rt△abd繞ab旋轉(zhuǎn)90°,即可得圖7的立體圖形。

⑵引導(dǎo)學(xué)生歸納三個(gè)練習(xí)題的等量關(guān)系:

練習(xí)1的等量關(guān)系是ab=ab;練習(xí)2的等量關(guān)系是ad+bd=ab;練習(xí)3的等量關(guān)系是aq2+bq2=ab2

《幾何》第三冊(cè)p57第10題,p58第4題。

板書(shū)設(shè)計(jì):

解直角三角形的應(yīng)用

例1已知:………例2已知:………小結(jié):………

求:………求:………

解:………解:………

練習(xí)1已知:………練習(xí)2已知:………練習(xí)3已知:………

求:………求:………求:………

解:………解:………解:………

您可能關(guān)注的文檔