手機閱讀

高中數(shù)學說課稿的評價標準(優(yōu)秀16篇)

格式:DOC 上傳日期:2024-02-26 03:08:03 頁碼:10
高中數(shù)學說課稿的評價標準(優(yōu)秀16篇)
2024-02-26 03:08:03    小編:琴心月

通過總結(jié),我們可以發(fā)現(xiàn)問題并尋找改進的方法。寫一篇較為完美的總結(jié),首先要明確總結(jié)的目的和范圍。歡迎大家參考以下總結(jié)范文,以便更好地完成自己的總結(jié)。

高中數(shù)學說課稿的評價標準篇一

知識與技能目標:準確理解橢圓的定義,掌握橢圓的標準方程及其推導(dǎo)。

過程與方法目標:通過引導(dǎo)學生親自動手嘗試畫圖、發(fā)現(xiàn)橢圓的形成過程進而歸納出橢圓的定義,培養(yǎng)學生觀察、辨析、歸納問題的能力。

情感、態(tài)度與價值觀目標:通過經(jīng)歷橢圓方程的化簡,增強學生戰(zhàn)勝困難的意志品質(zhì)并體會數(shù)學的簡潔美、對稱美,通過討論橢圓方程推導(dǎo)的等價性養(yǎng)成學生扎實嚴謹?shù)目茖W態(tài)度。

重點是橢圓的定義及標準方程,難點是推導(dǎo)橢圓的標準方程。

教學環(huán)節(jié)。

教學內(nèi)容和形式。

設(shè)計意圖。

復(fù)習。

提問:

(1)圓的定義是什么?圓的標準方程的形式怎樣?

(2)如何推導(dǎo)圓的標準方程呢?

激活學生已有的認知結(jié)構(gòu),為本課推導(dǎo)橢圓標準方程提供了方法與策略。

(略)。

操作-----交流-----歸納-----多媒體演示-----聯(lián)系生活。

在動手過程中,培養(yǎng)學生觀察、辨析、歸納問題的能力。

在變化的過程中發(fā)現(xiàn)圓與橢圓的聯(lián)系;建立起用聯(lián)系與發(fā)展的'觀點看問題;為下一節(jié)深入研究方程系數(shù)的幾何意義埋下伏筆。

教學環(huán)節(jié)。

注:1、平面內(nèi)。

2、若,則點p的軌跡為橢圓。

若,則點p的軌跡為線段。

若,則點p的軌跡不存在。

情境1.生活中,你見過哪些類似橢圓的圖形或物體?

情境2.讓學生觀察傾斜的圓柱形水杯的水面邊界線,并從中抽象出數(shù)學模型.(教師用多媒體演示)。

情境3.觀看天體運行的軌道圖片。

準確理解橢圓的定義。

滲透數(shù)學源于生活,圓錐曲線在生產(chǎn)和技術(shù)中有著廣泛的應(yīng)用。

例:已知點、為橢圓的兩個焦點,p為橢圓上的任意一點,且,其中,求橢圓的方程。

點撥-----板演-----點評。

(1)建系設(shè)點。

(2)寫出點的集合。

(3)寫出代數(shù)方程。

(4)化簡方程:

1請一位基礎(chǔ)較好,書寫規(guī)范的同學板演。

(5)證明:討論推導(dǎo)的等價性。

掌握橢圓標準方程及推導(dǎo)方法。

培養(yǎng)學生戰(zhàn)勝困難的意志品質(zhì)并感受數(shù)學的簡潔美、對稱美。

養(yǎng)成學生扎實嚴謹?shù)目茖W態(tài)度。

應(yīng)用。

舉例。

教學環(huán)節(jié)。

例1.(1)橢圓的焦點坐標為:

(2)橢圓的焦距為4,則m的值為:

活動過程:思考-----解答-----點評。

活動過程:思考-----解答-----點評。

變式1已知橢圓焦點的坐標分別是(-4,0)(4,0),且經(jīng)過點,求橢圓的標準方程。

求橢圓的標準方程。

思考-----解答-----點評。

認清橢圓兩種標準方程形式上的特征。

提問:本節(jié)課學習的主要知識是什么?你學會了哪些數(shù)學思想與方法?

活動過程:教師提問-----學生小結(jié)-----師生補充完善。

讓學生回顧本節(jié)所學知識與方法,以逐步提高學生自我獲取知識的能力。

作業(yè):教材第95頁,練習2、4,第96頁習題8-1,1、2、3、

分層次布置作業(yè),幫助學生鞏固所學知識;為學有余力的學生留有進一步探索、發(fā)展的空間。

8.1橢圓及其標準方程。

本節(jié)課的設(shè)計力圖貫徹"以人的發(fā)展為本"的教育理念,體現(xiàn)"教師為主導(dǎo),學生為主體"的現(xiàn)代教學思想。在對橢圓定義的講授中,遵循從生動直觀到抽象概括的教學原則和教學途徑,通過引導(dǎo)學生親自動手嘗試畫圖、發(fā)現(xiàn)橢圓的形成過程進而歸納出橢圓的定義,培養(yǎng)學生觀察、辨析、歸納問題的能力;讓橢圓生動靈活地呈現(xiàn)在學生面前,更有助于學生理解橢圓的內(nèi)涵和外延。對本課另一難點標準方程推導(dǎo)的講授中,在關(guān)鍵處設(shè)疑,以疑導(dǎo)思,讓學生先從目的、再從方法上考慮,引導(dǎo)學生對比、分析,師生共同完成。通過經(jīng)歷橢圓方程的化簡,增強了學生戰(zhàn)勝困難的意志品質(zhì)并體會數(shù)學的簡潔美、對稱美.通過討論橢圓方程推導(dǎo)的等價性養(yǎng)成學生扎實嚴謹?shù)目茖W態(tài)度。設(shè)計的例題及變式練習,充分利用新知識解決問題,使所學內(nèi)容得以鞏固。變式(2)的設(shè)計讓學生站在方程的角度認清橢圓兩種標準方程形式上的特征,將學生的思維提升到了一個新的高度。課后分層次布置作業(yè),幫助學生鞏固所學知識;課后探索更為學有余力的學生留有進一步探索、發(fā)展的空間。在教學中借助多媒體生動、直觀、形象的特點來突出教學重點。自始至終很好地調(diào)動學生的積極性,挖掘他們的內(nèi)在潛能,提高學生的綜合素質(zhì)。

高中數(shù)學說課稿的評價標準篇二

1、進一步熟練掌握求動點軌跡方程的基本方法。

2、體會數(shù)學實驗的直觀性、有效性,提高幾何畫板的操作能力。

(二)過程與方法

1、培養(yǎng)學生觀察能力、抽象概括能力及創(chuàng)新能力。

2、體會感性到理性、形象到抽象的思維過程。

3、強化類比、聯(lián)想的方法,領(lǐng)會方程、數(shù)形結(jié)合等思想。

(三)情感態(tài)度價值觀

1、感受動點軌跡的動態(tài)美、和諧美、對稱美。

2、樹立競爭意識與合作精神,感受合作交流帶來的成功感,樹立自信心,激發(fā)提出問題和解決問題的勇氣。

教學重點:運用類比、聯(lián)想的方法探究不同條件下的軌跡。

教學難點:圖形、文字、符號三種語言之間的過渡。

教學方法:觀察發(fā)現(xiàn)、啟發(fā)引導(dǎo)、合作探究相結(jié)合的教學方法。啟發(fā)引導(dǎo)學生積極思考并對學生的思維進行調(diào)控,幫助學生優(yōu)化思維過程,在此基礎(chǔ)上,提供給學生交流的機會,幫助學生對自己的思維進行組織和澄清,并能清楚地、準確地表達自己的數(shù)學思維。

教學手段:利用網(wǎng)絡(luò)教室,四人一機,多媒體教學手段。通過上述教學手段,一方面:再現(xiàn)知識產(chǎn)生的過程,通過多媒體動態(tài)演示,突破學生在舊知和新知形成過程中的障礙(靜態(tài)到動態(tài));另一方面:節(jié)省了時間,提高了課堂教學的效率,激發(fā)了學生學習的興趣。

教學模式:重點中學實施素質(zhì)教育的課堂模式“創(chuàng)設(shè)情境、激發(fā)情感、主動發(fā)現(xiàn)、主動發(fā)展”。

1、創(chuàng)設(shè)情景,引入課題

生活中我們四處可見軌跡曲線的影子。

演示:這是美麗的城市夜景圖。

演示:許多人認為天體運行的軌跡都是圓錐曲線,研究表明,天體數(shù)目越多,軌跡種類也越多。

演示建筑中也有許多美麗的軌跡曲線。

設(shè)計意圖:讓學生感受數(shù)學就在我們身邊,感受軌跡,曲線的動態(tài)美、和諧美、對稱美,激發(fā)學習興趣。

2、激發(fā)情感,引導(dǎo)探索

靠在墻角的梯子滑落了,如果梯子上站著一個人,我們不禁會想,這個人是直直的摔下去呢?還是劃了一條優(yōu)美的曲線飛出去呢?我們把這個問題轉(zhuǎn)化為數(shù)學問題就是新教材高二上冊88頁20題,也就是這里的例題1。

高中數(shù)學說課稿的評價標準篇三

導(dǎo)數(shù)是微積分的核心概念之一,它為研究函數(shù)提供了有效的方法. 在前面幾節(jié)課里學生對導(dǎo)數(shù)的概念已經(jīng)有了充分的認識,本節(jié)課教材從形的角度即割線入手,用形象直觀的“逼近”方法定義了切線,獲得導(dǎo)數(shù)的幾何意義,更有利于學生理解導(dǎo)數(shù)概念的本質(zhì)內(nèi)涵. 這節(jié)課可以利用幾何畫板進行動畫演示,讓學生通過觀察、思考、發(fā)現(xiàn)、思維、運用形成完整概念. 通過本節(jié)的學習,可以幫助學生更好的體會導(dǎo)數(shù)是研究函數(shù)的單調(diào)性、變化快慢等性質(zhì)最有效的工具,是本章的關(guān)鍵內(nèi)容。

2、教學的重點、難點、關(guān)鍵

教學重點:導(dǎo)數(shù)的幾何意義、切線方程的求法以及“數(shù)形結(jié)合,逼近”的思想方法。

教學難點:理解導(dǎo)數(shù)的幾何意義的本質(zhì)內(nèi)涵

1) 從割線到切線的過程中采用的逼近方法;

2) 理解導(dǎo)數(shù)的概念,將多方面的意義聯(lián)系起來,例如,導(dǎo)數(shù)反映了函數(shù)f(x)在點x附近的變化快慢,導(dǎo)數(shù)是曲線上某點切線的斜率,等等.

根據(jù)新課程標準的要求、學生的認知水平,確定教學目標如下:

1、知識與技能 :

通過實驗探求理解導(dǎo)數(shù)的幾何意義,理解曲線在一點的切線的概念,會求簡單函數(shù)在某點的切線方程。

過程與方法:

通過逼近、數(shù)形結(jié)合思想的具體運用,使學生達到思維方式的遷移,了解科學的思維方法。

3、情感態(tài)度與價值觀:

對于直線來說它的導(dǎo)數(shù)就是它的斜率,學生會很自然的思考導(dǎo)數(shù)在函數(shù)圖像上是不是有很特殊的幾何意義。而且剛剛學過了圓錐曲線,學生對曲線的切線的概念也有了一些認識,基于以上學情分析,我確定下列教法:

學法:為了發(fā)揮學生的主觀能動性,提高學生的綜合能力,本節(jié)課采取了

自主 、合作、探究的學習方法。

教具: 幾何畫板、幻燈片

1.創(chuàng)設(shè)情境

學生活動——問題系列

問題1 平面幾何中我們是怎樣判斷直線是否是圓的割線或切線的呢?

問題2 如圖直線l是曲線c的切線嗎?

(1)與 (2)與 還有直線與雙曲線的位置關(guān)系

問題3 那么對于一般的曲線,切線該如何定義呢?

【設(shè)計意圖】:通過類比構(gòu)建認知沖突。

學生活動——復(fù)習回顧

導(dǎo)數(shù)的定義

【設(shè)計意圖】:從理論和知識基礎(chǔ)兩方面為本節(jié)課作鋪墊。

2.探索求知

學生活動——試驗探究

問一;求導(dǎo)數(shù)的步驟是怎樣的?

第一步:求平均變化率;第二步:當趨近于0時,平均變化率無限趨近于的常數(shù)就是。

【設(shè)計意圖】:這是從“數(shù)”的角度描述導(dǎo)數(shù),為探究導(dǎo)數(shù)的幾何意義做準備。

問二;你能借助圖像說說平均變化率表示什么嗎?請在函數(shù)圖像中畫出來。

【設(shè)計意圖】:通過學生動手實踐得到平均變化率表示割線pq的斜率。

問三;在的過程中,你能描述一下割線pq的變化情況嗎?請在圖像中畫出來。

【設(shè)計意圖】:分別從“數(shù)”和“形”的角度描述的過程情況。從數(shù)的角度看,,q();從形的角度看, 的過程中,q點向p點無限趨近,割線pq趨近于確定的位置,這個位置的直線叫做曲線在 處的切線。

探究一:學生通過幾何畫板的演示觀察割線的變化趨勢,教師引導(dǎo)給出一般曲線的切線定義。

【設(shè)計意圖】: 借助多媒體教學手段引導(dǎo)學生發(fā)現(xiàn)導(dǎo)數(shù)的幾何意義,使問題變得直觀,易于突破難點;學生在過程中,可以體會逼近的思想方法。能夠同時從數(shù)與形兩個角度強化學生對導(dǎo)數(shù)概念的理解。

問四;你能從上述過程中概括出函數(shù)在處的導(dǎo)數(shù)的幾何意義嗎?

【設(shè)計意圖】:引導(dǎo)學生發(fā)現(xiàn)并說出:,割線pq切線pt,所以割線

pq的斜率切線pt的斜率。因此,=切線pt的斜率。

1、通過學生參加活動是否積極主動,能否與他人合作探索,對學生的學習過程評價;

2、通過學生對方法的選擇,對學生的學習能力評價;

3、通過練習、課后作業(yè),對學生的學習效果評價.

5、本節(jié)課設(shè)計目標力求使學生體會微積分的基本思想,感受近似與精確的統(tǒng)一,運動和靜止的統(tǒng)一,感受量變到質(zhì)變的轉(zhuǎn)化。希望利用這節(jié)課滲透辨證法的思想精髓.

高中數(shù)學說課稿的評價標準篇四

拋物線焦點性質(zhì)的探索(說課)

一、

1 教材的地位與作用 “拋物線焦點的性質(zhì)”是拋物線的重要性質(zhì)之一,它是在學生學習拋物線的一般性質(zhì)的基礎(chǔ)上,學習和研究的拋物線有關(guān)問題的基本工具之一;本節(jié)教材對于培養(yǎng)學生觀察、猜想、概括能力和邏輯推理能力具有重要的意義。

2 教學目的 全日制普通高級中學《數(shù)學教學大綱》第22頁“重視現(xiàn)代教育技術(shù)的運用”中明確提出:在數(shù)學教學過程中,應(yīng)有意識地利用計算機網(wǎng)絡(luò)等現(xiàn)代信息技術(shù),認識計算機的智能圖形、快速計算、機器證明、自動求解及人機交互等功能在數(shù)學教學中的巨大潛力,努力探索在現(xiàn)代信息技術(shù)支持下的教學方法、教學模式。設(shè)計和組織能吸引學生積極參與的數(shù)學活動,支持和鼓勵學生運用信息技術(shù)學習數(shù)學、開展課題研究,改進學習方式,提高學生的自主學習能力和創(chuàng)新意識。因此本人在現(xiàn)行高中新教材(試驗修訂本·必修)數(shù)學第二冊(上)拋物線這一節(jié)內(nèi)容為背景材料,以多媒體網(wǎng)絡(luò)教室為場地,以《幾何畫板》為教學工具與學習工具,設(shè)計了一堂《拋物線焦點性質(zhì)的探索》,具體目標如下:

(2) 能力目標:使學生學會研究數(shù)學問題的基本過程,能夠根據(jù)條件建立恰當?shù)臄?shù)學模型;培養(yǎng)辯證唯物主義思想和辯證思維能力(主要包括量變與質(zhì)變,常量與變量,運動與靜止)培養(yǎng)學生通過計算機來自主學習的能力與創(chuàng)新的能力。

(3) 情感目標:培養(yǎng)學生不畏困難,勇于鉆研、探索、大膽創(chuàng)新的精神,在挫折中成長鍛煉,培養(yǎng)學生良好的心理素質(zhì)和抗挫折能力,通過拋物線焦點性質(zhì)的探索及證明,使學生得到數(shù)學美和創(chuàng)造美的享受。

3 教學內(nèi)容、重點、難點及關(guān)鍵 本節(jié)安排兩節(jié)課,

第一節(jié)課:主要內(nèi)容是利用《幾何畫板》探索拋物線的有關(guān)性質(zhì);

第二節(jié)課:證明第一節(jié)所得到的有關(guān)性質(zhì)。

重點:

(1)如何利用《幾何畫板》探索、發(fā)現(xiàn)拋物線焦點的性質(zhì);

(2)如何證明這些性質(zhì)。

難點;

(1)如何利用《幾何畫板》探索、發(fā)現(xiàn)拋物線焦點的性質(zhì);

(2)如何證明這些性質(zhì)。

學生在網(wǎng)絡(luò)教室(每人一機),其中裝有《幾何畫板》軟件及上課系統(tǒng),每個學生的窗口,其他學生及教師都可以通過教師機切換,從而和其他學生交流,也可以通過網(wǎng)上論壇交流研究結(jié)果。

學生在網(wǎng)絡(luò)教室(每人一機)中有幾何畫板軟件,學生通過教師提供的網(wǎng)絡(luò),自已閱讀,下載有關(guān),利用《幾何畫板》的操作、試驗、猜想,通過自已的研究獲得結(jié)論,并互相討論觀察到的現(xiàn)象、交流研究結(jié)果。

4.1 使學生學會研究數(shù)學問題的基本過程,能夠根據(jù)條件建立恰當?shù)臄?shù)學模型 問題1 回顧一下拋物線的定義,并根據(jù)拋物線的定義思考用《幾何畫板》如何作出焦點在x軸上的拋物線圖象。 由于創(chuàng)設(shè)了一個創(chuàng)作的《幾何畫板》的窗口及網(wǎng)絡(luò)窗口,學生通過網(wǎng)絡(luò)學習,得到以上問題的多種作法,以下就其中的一種作法作為探索、研究拋物線焦點性質(zhì)的基本圖形。

高中數(shù)學說課稿的評價標準篇五

1、地位、作用和特點:

《》是高中數(shù)學課本第冊(修)的第章“”的第節(jié)內(nèi)容,高中數(shù)學課本說課稿。

特點之二是:。

根據(jù)《教學大綱》的要求和學生已有的知識基礎(chǔ)和認知能力,確定以下教學目標:

(1)知識目標:a、b、c。

(2)能力目標:a、b、c。

(3)德育目標:a、b。

教學的重點和難點:

(1)教學重點:

(2)教學難點:

基于上面的教材分析,我根據(jù)自己對研究性學習“啟發(fā)式”教學模式和新課程改革的理論認識,結(jié)合本校學生實際,主要突出了幾個方面:一是創(chuàng)設(shè)問題情景,充分調(diào)動學生求知欲,并以此來激發(fā)學生的探究心理。二是運用啟發(fā)式教學方法,就是把教和學的各種方法綜合起來統(tǒng)一組織運用于教學過程,以求獲得最佳效果。另外還注意獲得和交換信息渠道的綜合、教學手段的綜合和課堂內(nèi)外的綜合。并且在整個教學設(shè)計盡量做到注意學生的心理特點和認知規(guī)律,觸發(fā)學生的思維,使教學過程真正成為學生的學習過程,以思維教學代替單純的記憶教學。三是注重滲透數(shù)學思考方法(聯(lián)想法、類比法、數(shù)形結(jié)合等一般科學方法)。讓學生在探索學習知識的過程中,領(lǐng)會常見數(shù)學思想方法,培養(yǎng)學生的探索能力和創(chuàng)造性素質(zhì)。四是注意在探究問題時留給學生充分的時間,以利于開放學生的思維。當然這就應(yīng)在處理教學內(nèi)容時能夠做到葉老師所說“教就是為了不教”。因此,擬對本節(jié)課設(shè)計如下教學程序:

導(dǎo)入新課新課教學。

反饋發(fā)展。

學生學習的過程實際上就是學生主動獲取、整理、貯存、運用知識和獲得學習能力的過程,因此,我覺得在教學中,指導(dǎo)學生學習時,應(yīng)盡量避免單純地、直露地向?qū)W生灌輸某種學習方法。有效的能被學生接受的學法指導(dǎo)應(yīng)是滲透在教學過程中進行的,是通過優(yōu)化教學程序來增強學法指導(dǎo)的目的性和實效性。在本節(jié)課的'教學中主要滲透以下幾個方面的學法指導(dǎo)。

1、培養(yǎng)學生學會通過自學、觀察、實驗等方法獲取相關(guān)知識,使學生在探索研究過程中分析、歸納、推理能力得到提高。

本節(jié)教師通過列舉具體事例來進行分析,歸納出,并依。

據(jù)此知識與具體事例結(jié)合、推導(dǎo)出,這正是一個分析和推理的全過程。

演示,創(chuàng)設(shè)探索規(guī)律的情境,引導(dǎo)學生以可靠的事實為基礎(chǔ),經(jīng)過抽象思維揭示內(nèi)在規(guī)律,從而使學生領(lǐng)悟到把可靠的事實和深刻的理論思維結(jié)合起來的特點。

3、讓學生在探索性實驗中自己摸索方法,觀察和分析現(xiàn)象,從而發(fā)現(xiàn)“新”的問題或探索出“新”的規(guī)律。從而培養(yǎng)學生的發(fā)散思維和收斂思維能力,激發(fā)學生的創(chuàng)造動力。在實踐中要盡可能讓學生多動腦、多動手、多觀察、多交流、多分析;老師要給學生多點撥、多啟發(fā)、多激勵,不斷地尋找學生思維和操作上的閃光點,及時總結(jié)和推廣。

4、在指導(dǎo)學生解決問題時,引導(dǎo)學生通過比較、猜測、嘗試、質(zhì)疑、發(fā)現(xiàn)等探究環(huán)節(jié)選擇合適的概念、規(guī)律和解決問題方法,從而克服思維定勢的消極影響,促進知識的正向遷移。如教師引導(dǎo)學生對比中,蘊含的本質(zhì)差異,從而擺脫知識遷移的負面影響。這樣,既有利于學生養(yǎng)成認真分析過程、善于比較的好習慣,又有利于培養(yǎng)學生通過現(xiàn)象發(fā)掘知識內(nèi)在本質(zhì)的能力。

(一)、課題引入:

教師創(chuàng)設(shè)問題情景(創(chuàng)設(shè)情景:a、教師演示實驗。b、使用多媒體模擬一些比較有趣、與生活實踐比較有關(guān)的事例,教案《高中數(shù)學課本說課稿》。c、講述數(shù)學科學史上的有關(guān)情況。)激發(fā)學生的探究欲望,引導(dǎo)學生提出接下去要研究的問題。

(二)、新課教學:

1、針對上面提出的問題,設(shè)計學生動手實踐,讓學生通過動手探索有關(guān)的知識,并引導(dǎo)學生進行交流、討論得出新知,并進一步提出下面的問題。

2、組織學生進行新問題的實驗方法設(shè)計—這時在設(shè)計上最好是有對比性、數(shù)學方法性的設(shè)計實驗,指導(dǎo)學生實驗、通過多媒體的輔助,顯示學生的實驗數(shù)據(jù),模擬強化出實驗情況,由學生分析比較,歸納總結(jié)出知識的結(jié)構(gòu)。

(三)、實施反饋:

1、課堂反饋,遷移知識(最好遷移到與生活有關(guān)的例子)。讓學生分析有關(guān)的問題,實現(xiàn)知識的升華、實現(xiàn)學生的再次創(chuàng)新。

2、課后反饋,延續(xù)創(chuàng)新。通過課后練習,學生互改作業(yè),課后研實驗,實現(xiàn)課堂內(nèi)外的綜合,實現(xiàn)創(chuàng)新精神的延續(xù)。

在教學中我把黑板分為三部分,把知識要點寫在左側(cè),中間知識推導(dǎo)過程,右邊實例應(yīng)用。

的認識,使學生的認知活動逐步深化,既掌握了知識,又學會了方法。

總之,對課堂的設(shè)計,我始終在努力貫徹以教師為主導(dǎo),以學生為主體,以問題為基礎(chǔ),以能力、方法為主線,有計劃培養(yǎng)學生的自學能力、觀察和實踐能力、思維能力、應(yīng)用知識解決實際問題的能力和創(chuàng)造能力為指導(dǎo)思想。并且能從各種實際出發(fā),充分利用各種教學手段來激發(fā)學生的學習興趣,體現(xiàn)了對學生創(chuàng)新意識的培養(yǎng)。

高中數(shù)學說課稿的評價標準篇六

《數(shù)學課程標準》指出要讓學生感受生活中處處有數(shù)學,用數(shù)學知識解決生活中的實際問題。

基于這一理念,我在教學過程中力求聯(lián)系學生生活實際和已有的知識經(jīng)驗,從學生感興趣的素材,設(shè)計新穎的導(dǎo)入與例題教學,給數(shù)學課富予新的生命力。課堂中力求構(gòu)建一種自主探究、和諧合作的教學氛圍,讓學生經(jīng)歷知識的探究過程,培養(yǎng)學生感受生活中的數(shù)學和用數(shù)學知識解決生活問題的能力,體驗數(shù)學的應(yīng)用價值。

(一)教材的地位和作用。

有關(guān)統(tǒng)計圖的認識,小學階段主要認識條形統(tǒng)計圖、折線統(tǒng)計圖和扇形統(tǒng)計圖。考慮到扇形統(tǒng)計圖在日常生活中的廣泛應(yīng)用,《標準》把它作為必學內(nèi)容安排在本單元。本單元是在前面學習了條形統(tǒng)計圖和折線統(tǒng)計圖的特點和作用的基礎(chǔ)上進行教學的。主要通過熟悉的事例使學生體會到扇形統(tǒng)計圖的實用價值。

(二)教學目標。

1、聯(lián)系生活情境了解扇形統(tǒng)計圖的特點和作用。

2、能讀懂扇形統(tǒng)計圖,從中獲取有效的信息。

3、讓學生在觀察、比較、討論和交流中體會扇形統(tǒng)計圖反映的是整體和部分的關(guān)系。

(三)教學重點:

1、能讀懂扇形統(tǒng)計圖,理解扇形統(tǒng)計圖的特點和作用,并能從中獲取有效信息。

2、認識折線統(tǒng)計圖,了解折線統(tǒng)計圖的特點。

(四)教學難點:

1、能從扇形統(tǒng)計圖中獲得有用信息,并做出合理推斷。

2、能根據(jù)統(tǒng)計圖和數(shù)據(jù)進行數(shù)據(jù)變化趨勢的分析。

本單元的教學是在學生已有統(tǒng)計經(jīng)驗的基礎(chǔ)上,學習新知的。六年級的學生已經(jīng)學習了條形統(tǒng)計圖和折線統(tǒng)計圖,知道他們的特點,并具有一定的概括、分析能力,在此基礎(chǔ)上,通過新舊知識對比,自然生成新知識點。

1、本堂課力爭做到由“關(guān)注知識”轉(zhuǎn)向“關(guān)注學生”,由“傳授知識”轉(zhuǎn)向“引導(dǎo)探索”,“教師是組織者、領(lǐng)導(dǎo)者?!睂⒄n堂設(shè)置問題給學生,讓學生自己獲取信息、分析信息,自主探索、合作交流,參與知識的構(gòu)建。

2、運用探究法。探究學習的內(nèi)容以問題的形式出現(xiàn)在教師的引導(dǎo)下,學生自主探究,讓學生在課堂上多活動、多思考,自主構(gòu)建知識體系。引導(dǎo)學生獲取信息并合作交流。

《數(shù)學課程標準》指出有效的數(shù)學學習不能單純的依賴模仿和記憶,動手操作、自主探索與合作交流是學生學習數(shù)學的重要方式。教學時,我通過學生感興趣的話題引入,引導(dǎo)學生關(guān)注身邊的數(shù)學,使學生體會到觀察、概括、想象、遷移等數(shù)學學習方法,在師生互動中讓每個學生都動口,動手,動腦。培養(yǎng)學生學習的主動性和積極性。

本課分成創(chuàng)設(shè)情境,感知特點——分析數(shù)據(jù),理解特征——嘗試制圖,看圖分析——實踐應(yīng)用,全課總結(jié)四環(huán)節(jié)。

(一)復(fù)習引新。

1、復(fù)習舊知。

提問:我們學習過哪些統(tǒng)計方法?其中條形統(tǒng)計圖和折線統(tǒng)計圖各有什么特點?

2、引入新課。

(二)自主探索,學習新知。

新知識教學分二步教學:第一步整體感知,看懂統(tǒng)計圖,理解特征,這是本節(jié)課的重點。在教學中,以知識遷移的方式建立新舊知識之間的聯(lián)系,放手讓學生獨立思考,互相合作,進一步了解統(tǒng)計圖的特征。

三、課堂總結(jié)。

四、布置作業(yè)。

五、板書設(shè)計:

高中數(shù)學說課稿的評價標準篇七

二面角及其平面角的概念是立體幾何最重要的概念之一。二面角的概念發(fā)展、完善了空間角的概念;而二面角的平面角不但定量描述了兩相交平面的相對位置,同時它也是空間中線線、線面、面面垂直關(guān)系的一個匯集點。搞好本節(jié)課的學習,對學生系統(tǒng)地掌握直線和平面的知識乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。教學大綱明確要求要讓學生掌握二面角及其平面角的概念和運用。

2、教學目標。

根據(jù)上面對教材的分析,并結(jié)合學生的認知水平和思維特點,確定本節(jié)課的教學目標:

認知目標:

(1)使學生正確理解二面角及其平面角的概念,并能初步運用它們解決實際問題。

(2)進一步培養(yǎng)學生把空間問題轉(zhuǎn)化為平面問題的化歸思想。

能力目標:以培養(yǎng)學生的創(chuàng)新能力和動手能力為重點。

(1)突出對類比、直覺、發(fā)散等探索性思維的培養(yǎng),從而提高學生的創(chuàng)新能力。

(2)通過對圖形的觀察、分析、比較和操作來強化學生的動手操作能力。

教育目標:

(1)使學生認識到數(shù)學知識來自實踐,并服務(wù)于實踐,從而增強學生應(yīng)用數(shù)學的意識。

(2)通過揭示線線、線面、面面之間的內(nèi)在聯(lián)系,進一步培養(yǎng)學生聯(lián)系的辯證唯物主義觀點。

3、本節(jié)課教學的重、難點是兩個過程的教學:

(1)二面角的平面角概念的形成過程。

(2)尋找二面角的平面角的方法的發(fā)現(xiàn)過程。

其理由如下:

(1)現(xiàn)行教材省略了概念的形成過程和方法的發(fā)現(xiàn)過程,沒有反映出科學認識產(chǎn)生的辯證過程,與學生的認知規(guī)律相悖,給學生的學習造成了很大的困難,非常不利于學生創(chuàng)新能力、獨立思考能力以及動手能力的培養(yǎng)。

(2)現(xiàn)代認知學認為,揭示知識的形成過程,對學生學習新知識是十分必要的。同時通過展現(xiàn)知識的發(fā)生、發(fā)展過程,給學生思考、探索、發(fā)現(xiàn)和創(chuàng)新提供了最大的空間,可以使學生在整個教學過程中始終處于積極的`思維狀態(tài),進而培養(yǎng)他們獨立思考和大膽求索的精神,這樣才能全面落實本節(jié)課的教學目標。

在設(shè)計本教學時,主要貫徹了以下兩個思想:

1、樹立以學生發(fā)展為本的思想。通過構(gòu)建以學習者為中心、有利于學生主體精神、創(chuàng)新能力健康發(fā)展的寬松的教學環(huán)境,提供學生自主探索和動手操作的機會,鼓勵他們創(chuàng)新思考,親身參與概念和方法的形成過程。2、堅持協(xié)同創(chuàng)新原則。把教材創(chuàng)新、教法創(chuàng)新以及學法創(chuàng)新有機地統(tǒng)一起來,因為只有教師創(chuàng)新地教,學生創(chuàng)新地學,才能營建一個有利于創(chuàng)新能力培養(yǎng)的良好環(huán)境。

首先是教材創(chuàng)新。

(1)在二面角的平面角概念引入上,我變課本上的“直接給出定義”為“類比——猜想——操作——定義”,也就是變封閉的、邏輯演繹體系為開放的、探索性的發(fā)現(xiàn)過程。

(2)在引入定義之后,例題講解之前,引導(dǎo)學生發(fā)現(xiàn)尋找二面角的平面角的方法,為例題做好鋪墊。

(3)重新編排例題。

其次是教法創(chuàng)新。采用多種創(chuàng)新的教學方法,包括問題解決法、類比發(fā)現(xiàn)法、研究發(fā)現(xiàn)法等教學方法。

這組教學方法的特點是教師通過創(chuàng)設(shè)問題情境,引導(dǎo)學生逐步發(fā)現(xiàn)知識的形成過程,使教學活動真正建立在學生自主活動和探索的基礎(chǔ)上,著力培養(yǎng)學生的創(chuàng)新能力。

這組教學方法使得學生在解決問題的過程中學數(shù)學,用數(shù)學,不僅強調(diào)動腦思考,而且強調(diào)動手操作,親身體驗,注重多感官參與、多種心理能力的投入,通過學生全面、多樣的主體實踐活動,促進他們獨立思考能力、動手能力等多方面素質(zhì)的整體發(fā)展。

教學手段的現(xiàn)代化有利于提高課堂效益,有利于創(chuàng)新人才的培養(yǎng),根據(jù)本節(jié)課的教學需要,確定利用《幾何畫板》制作課件來輔助教學;此外,為加強直觀教學,教師可預(yù)先做好一些模型。

最后是學法創(chuàng)新。意在指導(dǎo)學生會創(chuàng)新地學。

1、樂學:在整個學習過程中學生要保持強烈的好奇心和求知欲,不斷強化自己的創(chuàng)新意識,全身心地投入到學習中去,成為學習的主人。

2、學會:在掌握基礎(chǔ)知識的同時,學生要注意領(lǐng)會化歸、類比聯(lián)想等數(shù)學思想方法的運用,學會建立完善的認知結(jié)構(gòu)。

3、會學:通過自已親身參與,學生要領(lǐng)會復(fù)習類比和深入研究這兩種知識創(chuàng)新的方法,從而既學到知識,又學會創(chuàng)新。

(一)、二面角。

1、揭示概念產(chǎn)生背景。

心理學研究表明,當學生明確數(shù)學概念的學習目的和意義時,就會對概念的學習產(chǎn)生濃厚的興趣。創(chuàng)設(shè)問題情境,激發(fā)了學生的創(chuàng)新意識,營造了創(chuàng)新思維的氛圍。

問題情境1、我們是如何定量研究兩平行平面的相對位置的?

問題情境3、我們應(yīng)如何定量研究兩個相交平面之間的相對位置呢?

通過這三個問題,打開了學生的原有認知結(jié)構(gòu),為知識的創(chuàng)新做好了準備;同時也讓學生領(lǐng)會到,二面角這一概念的產(chǎn)生是因為研究兩相交平面的相對位置的需要,從而明確新課題研究的必要性,觸發(fā)學生積極思維活動的展開。

2、展現(xiàn)概念形成過程。

高中數(shù)學說課稿的評價標準篇八

1.教材所處的地位和作用:

本節(jié)內(nèi)容在全書和章節(jié)中的作用是:《xx》是中數(shù)學教材第冊第章第節(jié)內(nèi)容。在此之前學生已學習了基礎(chǔ),這為過渡到本節(jié)的學習起著鋪墊作用。本節(jié)內(nèi)容是在中,占據(jù)的地位。以及為其他學科和今后的學習打下基礎(chǔ)。

2.教育教學目標:

根據(jù)上述教材分析,考慮到學生已有的認知結(jié)構(gòu)心理特征,制定如下教學目標:

(1)知識目標:

(3)情感目標:通過的教學引導(dǎo)學生從現(xiàn)實的生活經(jīng)歷與體驗出發(fā),激發(fā)學生學習興趣。

3.重點,難點以及確定依據(jù):

下面,為了講清重難上點,使學生能達到本節(jié)課設(shè)定的目標,再從教法和學法上談?wù)劊?/p>

1.教學手段:

如何突出重點,突破難點,從而實現(xiàn)教學目標。在教學過程中擬計劃進行如下操作:教學方法。基于本節(jié)課的特點:應(yīng)著重采用的教學方法。

2.教學方法及其理論依據(jù):堅持“以學生為主體,以教師為主導(dǎo)”的原則,根據(jù)學生的心理發(fā)展規(guī)律,采用學生參與程度高的學導(dǎo)式討論教學法。在學生看書,討論的基礎(chǔ)上,在老師啟發(fā)引導(dǎo)下,運用問題解決式教法,師生交談法,圖像信號法,問答式,課堂討論法。在采用問答法時,特別注重不同難度的問題,提問不同層次的學生,面向全體,使基礎(chǔ)差的學生也能有表現(xiàn)機會,培養(yǎng)其自信心,激發(fā)其學習熱情。有效的開發(fā)各層次學生的潛在智能,力求使學生能在原有的基礎(chǔ)上得到發(fā)展。同時通過課堂練習和課后作業(yè),啟發(fā)學生從書本知識回到社會實踐。提供給學生與其生活和周圍世界密切相關(guān)的數(shù)學知識,學習基礎(chǔ)性的知識和技能,在教學中積極培養(yǎng)學生學習興趣和動機,明確的學習目的,老師應(yīng)在課堂上充分調(diào)動學生的學習積極性,激發(fā)來自學生主體的最有力的動力。

3.學情分析:(說學法)。

(2)知識障礙上:知識掌握上,學生原有的知識,許多學生出現(xiàn)知識遺忘,所以應(yīng)全面系統(tǒng)的去講述;學生學習本節(jié)課的知識障礙,知識學生不易理解,所以教學中老師應(yīng)予以簡單明白,深入淺出的分析。

最后我來具體談?wù)勥@一堂課的教學過程:

4.教學程序及設(shè)想:

(1)由引入:把教學內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學生產(chǎn)生強烈的問題意識,使學生的整個學習過程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過程。在實際情況下學習可以使學生利用已有的知識與經(jīng)驗,同化和索引出當肖學習的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問題情境中。

(2)由實例得出本課新的知識點。

(3)講解例題。在講例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進行概括,有利于學生的思維能力。

(4)能力訓練。課后練習使學生能鞏固羨慕自覺運用所學知識與解題思想方法。

(5)總結(jié)結(jié)論,強化認識。知識性的內(nèi)容小結(jié),可把課堂教學傳授的知識盡快化為學生的素質(zhì),數(shù)學思想方法的小結(jié),可使學生更深刻地理解數(shù)學思想方法在解題中的地位和應(yīng)用,并且逐步培養(yǎng)學生良好的個性品質(zhì)目標。

(6)變式延伸,進行重構(gòu),重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯(lián),累積,加工,從而達到舉一反三的效果。

(7)板書。

(8)布置作業(yè)。

針對學生素質(zhì)的差異進行分層訓練,既使學生掌握基礎(chǔ)知識,又使學有余力的學生有所提高。

(一)課堂結(jié)構(gòu):復(fù)習提問,導(dǎo)入講授課,課堂練習,鞏固新課,布置作業(yè)等五部分。

集合這章內(nèi)容,教學參考書上安排的課時為五課時,我們的導(dǎo)學案也是安排五課時,實際教學時,由于對學生的實際情況估計不足,第一課時的導(dǎo)學案用了兩課時才完成。集合這一章的特點是概念不多,但這章所涉及到的內(nèi)容很廣,學生學習本章內(nèi)容時,不僅要理解本章的概念,還要理解與本章內(nèi)容相關(guān)聯(lián)的其他內(nèi)容,這些內(nèi)容有初中學習過的內(nèi)容、有生活中的方方面面的相關(guān)知識,再加上高中學習方法與初中不同,邏輯思維能力要求較高,因此學生感覺學起來比較困難。針對這種情況,我在實際教學時,首先要求學生準確理解概念,如:集合的元素具有三個性質(zhì):確定性、互異性、無序性。集合的關(guān)系、運算等都是從元素的角度定義的,所以解集合問題時,教會學生對元素的性質(zhì)進行分析,反復(fù)訓練,讓學生通過實例體會這三個性質(zhì)。

第二,掌握相關(guān)的符號語言、venn圖,正確使用列舉法、描述法表示集合,特別要注意用描述法表示集合時,集合中的元素是什么,這是一個教學難點。第二個難點是集合的運算—交集和并集。突破難點充分運用數(shù)形結(jié)合思想,集合間的關(guān)系和運算,以數(shù)形結(jié)合思想為指導(dǎo),借助圖形思考,可以使各集合間的關(guān)系直觀明了,使抽象的集合運算建立在直觀的基礎(chǔ)上,使解題思路清晰明朗,直觀簡捷,有利于問題的解決。

第三,指導(dǎo)學生理解并掌握自然語言、符號語言、圖形語言這三種語言,靈活準確地進行語言轉(zhuǎn)換,可以幫助學生提高分析問題,解決問題的能力。

第四,集合問題涉及到的其他內(nèi)容,遇到了講透,不拓展。

高中數(shù)學說課稿的評價標準篇九

尊敬的各位考官:

大家好!

我是今天的x號考生,今天我說課的題目是《直線與平面平行的判定》。

高中數(shù)學課程以學生發(fā)展為本,提升數(shù)學學科核心素養(yǎng)。這節(jié)課我將秉承這一教學理念,從教材分析、教學目標、教學過程等幾個方面來展開我的說課。

本節(jié)課選自人教a版高中數(shù)學必修2第二章第2節(jié)。此前學生對空間立體幾何已經(jīng)有了一定的感知。通過本節(jié)課的學習,能使學生進一步了解空間中直線與平面平行關(guān)系的判定方法,培養(yǎng)學生的邏輯思維和空間想象能力。

學生已經(jīng)學習了空間中點、直線、平面間的位置關(guān)系,知道若直線與平面平行,則沒有公共點,但直接利用定義無法進行判斷。因而我會注意在教學時逐步引導(dǎo)學生,在辯證思考中探索直線與平面平行的條件。

根據(jù)以上對教材的分析和對學情的把握,我設(shè)置本節(jié)課的教學目標如下:

掌握直線與平面平行的判定定理,會用文字語言、符號語言和圖形語言描述判定定理,并會進行簡單應(yīng)用。

通過直觀感知、觀察、操作確認的認知過程,培養(yǎng)空間想象力和邏輯思維能力,體會“降維”的思想。

通過生活中的實例,體會平行關(guān)系在生活中的廣泛應(yīng)用;在探究線面平行判定定理的過程中,形成學習數(shù)學的積極態(tài)度。

根據(jù)學生現(xiàn)有的知識儲備和知識本身的難易程度,我設(shè)置本節(jié)課教學重點為:直線與平面平行的判定定理。教學難點為:直線與平面平行的判定定理的探究。

為達成教學目標,突破教學重難點,本節(jié)課我將采用講授法、自主探究法、練習法等教學方法,以達到教與學的和諧完美統(tǒng)一。

下面我將重點談?wù)勎业慕虒W過程。

導(dǎo)入環(huán)節(jié)我會帶領(lǐng)學生從文字語言、圖形語言和符號語言這三個角度復(fù)習直線與平面有哪些位置關(guān)系。接著我會請學生思考,該如何判定直線與平面平行。根據(jù)定義,只需判定直線與平面沒有公共點即可。但直線無限伸長,平面無限延展,如何保證直線與平面無公共點。由此引發(fā)認知沖突,引入本節(jié)課的學習。

通過復(fù)習導(dǎo)入,不僅鞏固了之前所學,建立起新舊知識之間的聯(lián)系,而且能夠有效激發(fā)起學生的學習興趣,從而為下面的學習打好基礎(chǔ)。

接下來是新知講解環(huán)節(jié)。

我會請學生觀察,教室門扇的兩邊是平行的,當門扇繞著一邊轉(zhuǎn)動時,觀察門扇轉(zhuǎn)動的一邊和門框所在平面有怎樣的位置關(guān)系。并組織學生動手操作,將書本平放在桌面上,翻動書的封面,封面邊緣所在直線與桌面所在平面具有什么樣的位置關(guān)系。

學生不難看出其中的平行關(guān)系。在此基礎(chǔ)上,我會請學生同桌兩人交流討論,如果直線與平面平行,則這條直線與平面內(nèi)多少條直線平行。如果這條直線平行于平面內(nèi)的無數(shù)條直線,那么這條直線是否一定與這個平面平行。

除了知道知識,學生還要能對知識進行應(yīng)用。我會出示以下練習題:求證空間四邊形相鄰兩邊中點的連線平行于另外兩邊所在的平面。結(jié)合這一練習題,我會進一步強調(diào),線面平行問題可轉(zhuǎn)化為線線平行問題。這也為之后線面、面面關(guān)系的學習奠定基礎(chǔ)。

課堂小結(jié)部分,我會充分發(fā)揮學生的主體性,請學生說一說本節(jié)課的收獲。收獲不僅僅只是知識方面,也可以說一說這節(jié)課學到的思想方法等,進一步培養(yǎng)學生的綜合素質(zhì)。

課后作業(yè)我會請學生完成書上相應(yīng)練習題,使學生在課后也能得到思考,夯實學生對于新知的掌握。

我的板書設(shè)計遵循簡潔明了、突出重點的原則,以下是我的板書設(shè)計:

略。

高中數(shù)學說課稿的評價標準篇十

本節(jié)主要研究閉區(qū)間上的連續(xù)函數(shù)最大值和最小值的求法和實際應(yīng)用,分兩課時,這里是第一課時,它是在學生已經(jīng)會求某些函數(shù)的最值,并且已經(jīng)掌握了性質(zhì):“如果f(x)是閉區(qū)間[a,b]上的連續(xù)函數(shù),那么f(x)在閉區(qū)間[a,b]上有最大值和最小值”,以及會求可導(dǎo)函數(shù)的極值之后進行學習的,學好這一節(jié),學生將會求更多的函數(shù)的最值,運用本節(jié)知識可以解決科技、經(jīng)濟、社會中的一些如何使成本最低、產(chǎn)量最高、效益最大等實際問題。這節(jié)課集中體現(xiàn)了數(shù)形結(jié)合、理論聯(lián)系實際等重要的數(shù)學思想方法,學好本節(jié),對于進一步完善學生的知識結(jié)構(gòu),培養(yǎng)學生用數(shù)學的意識都具有極為重要的意義。

會求閉區(qū)間上連續(xù)開區(qū)間上可導(dǎo)的函數(shù)的最值。

高三年級學生雖然已經(jīng)具有一定的知識基礎(chǔ),但由于對求函數(shù)極值還不熟練,特別是對優(yōu)化解題過程依據(jù)的理解會有較大的困難,所以這節(jié)課的難點是理解確定函數(shù)最值的方法。

本節(jié)課突破難點的關(guān)鍵是:理解方程f′(x)=0的解,包含有指定區(qū)間內(nèi)全部可能的極值點。

根據(jù)本節(jié)教材在高中數(shù)學知識體系中的地位和作用,結(jié)合學生已有的認知水平,制定本節(jié)如下的教學目標:

(1)理解函數(shù)的最值與極值的區(qū)別和聯(lián)系。

(2)進一步明確閉區(qū)間[a,b]上的連續(xù)函數(shù)f(x),在[a,b]上必有最大、最小值。

(3)掌握用導(dǎo)數(shù)法求上述函數(shù)的最大值與最小值的方法和步驟。

(1)了解開區(qū)間內(nèi)的連續(xù)函數(shù)或閉區(qū)間上的不連續(xù)函數(shù)不一定有最大、最小值。

(2)理解閉區(qū)間上的連續(xù)函數(shù)最值存在的可能位置:極值點處或區(qū)間端點處。

(3)會求閉區(qū)間上連續(xù),開區(qū)間內(nèi)可導(dǎo)的函數(shù)的最大、最小值。

(1)認識事物之間的的區(qū)別和聯(lián)系。

(2)培養(yǎng)學生觀察事物的能力,能夠自己發(fā)現(xiàn)問題,分析問題并最終解決問題。

(3)提高學生的數(shù)學能力,培養(yǎng)學生的創(chuàng)新精神、實踐能力和理性精神。

根據(jù)皮亞杰的建構(gòu)主義認識論,知識是個體在與環(huán)境相互作用的過程中逐漸建構(gòu)的結(jié)果,而認識則是起源于主客體之間的相互作用。

本節(jié)課在幫助學生回顧肯定了閉區(qū)間上的連續(xù)函數(shù)一定存在最大值和最小值之后,引導(dǎo)學生通過觀察閉區(qū)間內(nèi)的連續(xù)函數(shù)的幾個圖象,自己歸納、總結(jié)出函數(shù)最大值、最小值存在的可能位置,進而探索出函數(shù)最大值、最小值求解的方法與步驟,并優(yōu)化解題過程,讓學生主動地獲得知識,老師只是進行適當?shù)囊龑?dǎo),而不進行全部的灌輸。為突出重點,突破難點,這節(jié)課主要選擇以合作探究式教學法組織教學。

對于求函數(shù)的最值,高三學生已經(jīng)具備了良好的知識基礎(chǔ),剩下的問題就是有沒有一種更一般的方法,能運用于更多更復(fù)雜函數(shù)的求最值問題?教學設(shè)計中注意激發(fā)起學生強烈的求知欲望,使得他們能積極主動地觀察、分析、歸納,以形成認識,參與到課堂活動中,充分發(fā)揮他們作為認知主體的作用。

本節(jié)課的教學,大致按照“創(chuàng)設(shè)情境,鋪墊導(dǎo)入——合作學習,探索新知——指導(dǎo)應(yīng)用,鼓勵創(chuàng)新——歸納小結(jié),反饋回授”四個環(huán)節(jié)進行組織。

高中數(shù)學說課稿的評價標準篇十一

1、學習任務(wù)分析:充要條件是中學數(shù)學中最重要的數(shù)學概念之一,它主要討論了命題的條件與結(jié)論之間的邏輯關(guān)系,目的是為今后的數(shù)學學習特別是數(shù)學推理的學習打下基礎(chǔ)。

教學重點:充分條件、必要條件和充要條件三個概念的定義。

2、學生情況分析:從學生學習的角度看,與舊教材相比,教學時間的前置,造成學生在學習充要條件這一概念時的知識儲備不夠豐富,邏輯思維能力的訓練不夠充分,這也為教師的教學帶來一定的困難.因此,新教材在第一章的小結(jié)與復(fù)習中,把學生的學習要求規(guī)定為“初步掌握充要條件”(注意:新教學大綱的教學目標是“掌握充要條件的意義”),這是比較切合教學實際的.由此可見,教師在充要條件這一內(nèi)容的新授教學時,不可拔高要求追求一步到位,而要在今后的教學中滾動式逐步深化,使之與學生的知識結(jié)構(gòu)同步發(fā)展完善。

教學難點:“充要條件”這一節(jié)介紹了充分條件,必要條件和充要條件三個概念,由于這些概念比較抽象,中學生不易理解,用它們?nèi)ソ鉀Q具體問題則更為困難,因此”充要條件”的教學成為中學數(shù)學的難點之一,而必要條件的定義又是本節(jié)內(nèi)容的難點.根據(jù)多年教學實踐,學生對”充分條件”的概念較易接受,而必要條件的概念都難以理解.對于“b=a”,稱a是b的必要條件難于接受,a本是b推出的結(jié)論,怎么又變成條件了呢?對這學生難于理解。

教學關(guān)鍵:找出a、b,根據(jù)定義判斷a=b與b=a是否成立。教學中,要強調(diào)先找出a、b,否則,學生可能會對必要條件難以理解。

(一)知識目標:

1、正確理解充分條件、必要條件、充要條件三個概念。

2、能利用充分條件、必要條件、充要條件三個概念,熟練判斷四種命題間的關(guān)系。

(二)能力目標:

1、培養(yǎng)學生的觀察與類比能力:“會觀察”,通過大量的問題,會觀察其共性及個性。

2、培養(yǎng)學生的歸納能力:“敢歸納”,敢于對一些事例,觀察后進行歸納,總結(jié)出一般規(guī)律。

(三)情感目標:

1、通過以學生為主體的教學方法,讓學生自己構(gòu)造數(shù)學命題,發(fā)展體驗獲取知識的感受。

2、通過對命題的四種形式及充分條件,必要條件的相對性,培養(yǎng)同學們的辯證唯物主義觀點。

3、通過“會觀察”,“敢歸納”,“善建構(gòu)”,培養(yǎng)學生自主學習,勇于創(chuàng)新,多方位審視問題的創(chuàng)造技巧,敢于把錯誤的思維過程及弱點暴露出來,并在問題面前表現(xiàn)出濃厚的興趣和不畏困難、勇于進取的精神。

數(shù)學知識來源于生活實際,生活本身又是一個巨大的數(shù)學課堂,我在教學過程中注重把教材內(nèi)容與生活實踐結(jié)合起來,加強數(shù)學教學的實踐性,給數(shù)學找到生活的原型。我對本節(jié)課的數(shù)學知識結(jié)構(gòu)進行創(chuàng)造性地“教學加工”,在教學方法上采用了“合作——探索”的開放式教學模式,使課堂教學體現(xiàn)“參與式”、“生活化”、“探索性”,保證學生對數(shù)學知識的主動獲取,促進學生充分、和諧、自主、個性化的發(fā)展。

整個教學設(shè)計的主要特色:

(1)由生活事例引出課題;

(2)采用開放式教學模式;

(3)擴展例題是分析生活中的名言名句,又將數(shù)學融入生活中。

努力做到:“教為不教,學為會學”;要“授之以魚”更要“授之以漁”。

本節(jié)課是概念課,要避免單一的下定義作練習模式,應(yīng)該努力使課堂元素更為豐富。這節(jié)課,我借助了多媒體課件,配合教學,添加了一些與例題相匹配的圖片背景,以激發(fā)學生的學習興趣,另外將學生的自編題利用多媒體課件展示出來分析,提高了課堂教學的效率。

第一,創(chuàng)設(shè)情境,激發(fā)興趣,引出課題:

考慮到高一學生學習這一章的知識儲備不足,我利用日常生活中的具體事例來提出本課的問題,并與學生共同利用原有的知識分析,事例中包括幾個問題,為后面定義的分析埋下伏筆。

我用的第一個事例是:“做一件襯衫,需用布料,到布店去買,問營業(yè)員應(yīng)該買多少?他說買3米足夠了?!边@樣,就產(chǎn)生了“3米布料”與“做一件襯衫夠不夠”的關(guān)系。用這個事件目的是為了第二部分引導(dǎo)學生得出充分條件的定義。這里要強調(diào)該事件包括:a:有3米布料;b:做一件襯衫夠了。

第二個事例是:“一人病重,呼吸困難,急診住院接氧氣?!本彤a(chǎn)生了“氧氣”與“活命與否”的關(guān)系。用這個事件的目的是為了第二部分引導(dǎo)學生得出必要條件的定義。這里要強調(diào)該事件包括:a:接氧氣;b:活了。

用以上兩個生活中的事例來說明數(shù)學中應(yīng)研究的概念、關(guān)系,會使學生感到親切自然,有助于提高興趣和深入領(lǐng)會概念的內(nèi)容,特別是它的必要性。

第二,引導(dǎo)學生分析實例,給出定義。

在第一部分激發(fā)起學生的學習興趣后,緊接著開展第二部分,引導(dǎo)學生分析實例,讓學生從事例中抽象出數(shù)學概念,得出本節(jié)課所要學習的充分條件和必要條件的定義。在引導(dǎo)過程中盡量放慢語速,結(jié)合事例幫助學生分析。

得出定義之后,這里有必要再利用本課前面兩節(jié)的“邏輯聯(lián)結(jié)詞”和“四種命題”的知識來加強對必要條件定義的理解。(用前面的例子來說即:“活了,則說明在輸氧”)可記作: 。

還應(yīng)指出的是“必要條件”的定義,有如繞口令,要一次廓清,不可拖泥帶水。這里,只要一下子“定義”清楚了,下邊再解釋“ ,a是b的必要條件”是怎么回事。這樣處理,學生更容易接受“必要”二字。(因無a則無b,故欲有b,a是必要的)。

當兩個定義分別給出后,我又對它們之間的區(qū)別加以分析說明,(充分條件可能會有多余,浪費,必要條件可能還不足(以使事件b成立))從而順理成章地引出充要條件的定義(既是必要條件,又是充分條件,就稱為充分必要條件,簡稱充要條件,記作: 。(不多不少,恰到好處)。使學生在此先對兩個充分條件和必要條件兩個概念的不同有了第一次的認識,第三部分再利用具體的數(shù)學事例來強化。

高中數(shù)學說課稿的評價標準篇十二

根據(jù)函數(shù)單調(diào)性在整個教材內(nèi)容中的地位與作用,本節(jié)課教學應(yīng)實現(xiàn)如下教學目標:

知識與技能使學生理解函數(shù)單調(diào)性的概念,初步掌握判別函數(shù)單調(diào)性的方法;

過程與方法引導(dǎo)學生通過觀察、歸納、抽象、概括,自主建構(gòu)單調(diào)增函數(shù)、單調(diào)減函數(shù)等概念;能運用函數(shù)單調(diào)性概念解決簡單的問題;使學生領(lǐng)會數(shù)形結(jié)合的數(shù)學思想方法,培養(yǎng)學生發(fā)現(xiàn)問題、分析問題、解決問題的能力。

情感態(tài)度與價值觀在函數(shù)單調(diào)性的學習過程中,使學生體驗數(shù)學的科學價值和應(yīng)用價值,培養(yǎng)學生善于觀察、勇于探索的良好習慣和嚴謹?shù)目茖W態(tài)度。

根據(jù)上述教學目標,本節(jié)課的教學重點是函數(shù)單調(diào)性的概念形成和初步運用.雖然高一學生已經(jīng)有一定的抽象思維能力,但函數(shù)單調(diào)性概念對他們來說還是比較抽象的。因此,本節(jié)課的學習難點是函數(shù)單調(diào)性的概念形成。

為了實現(xiàn)本節(jié)課的教學目標,在教法上我采取了。

1、通過學生熟悉的實際生活問題引入課題,為概念學習創(chuàng)設(shè)情境,拉近數(shù)學與現(xiàn)實的距離,激發(fā)學生求知欲,調(diào)動學生主體參與的積極性。

2、在形成概念的過程中,緊扣概念中的關(guān)鍵語句,通過學生的主體參與,正確地形成概念。

3、在鼓勵學生主體參與的同時,不可忽視教師的主導(dǎo)作用,要教會學生清晰的思維、嚴謹?shù)耐评恚㈨樌赝瓿蓵姹磉_。

在學法上我重視了:

1、讓學生利用圖形直觀啟迪思維,并通過正、反例的構(gòu)造,來完成從感性認識到理性思維的質(zhì)的飛躍。

2、讓學生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運用,培養(yǎng)學生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力。

函數(shù)單調(diào)性的概念產(chǎn)生和形成是本節(jié)課的難點,為了突破這一難點,在教學設(shè)計上采用了下列四個環(huán)節(jié)。

(一)創(chuàng)設(shè)情境,提出問題。

(問題情境)(播放中央電視臺天氣預(yù)報的音樂)。如圖為某地區(qū)20xx年元旦這一天24小時內(nèi)的氣溫變化圖,觀察這張氣溫變化圖:

[教師活動]引導(dǎo)學生觀察圖象,提出問題:

問題1:說出氣溫在哪些時段內(nèi)是逐步升高的或下降的?

問題2:怎樣用數(shù)學語言刻畫上述時段內(nèi)“隨著時間的增大氣溫逐漸升高”這一特征?

[設(shè)計意圖]問題是數(shù)學的心臟,問題是學生思維的開始,問題是學生興趣的開始。這里,通過兩個問題,引發(fā)學生的進一步學習的好奇心。

(二)探究發(fā)現(xiàn)建構(gòu)概念。

[學生活動]對于問題1,學生容易給出答案。問題2對學生來說較為抽象,不易回答。

[教師活動]為了引導(dǎo)學生解決問題2,先讓學生觀察圖象,通過具體情形,例如,“t1=8時,f(t1)=1,t2=10時,f(t2)=4”這一情形進行描述.引導(dǎo)學生回答:對于自變量810,對應(yīng)的函數(shù)值有14。舉幾個例子表述一下。然后給出一個鋪墊性的問題:結(jié)合圖象,請你用自己的語言,描述“在區(qū)間[4,14]上,氣溫隨時間增大而升高”這一特征。

在學生對于單調(diào)增函數(shù)的特征有一定直觀認識時,進一步提出:

問題3:對于任意的t1、t2∈[4,16]時,當t1。

(t1)。

[學生活動]通過觀察圖象、進行實驗(計算機)、正反對比,發(fā)現(xiàn)數(shù)量關(guān)系,由具體到抽象,由模糊到清晰逐步歸納、概括、抽象出單調(diào)增函數(shù)概念的本質(zhì)屬性,并嘗試用符號語言進行初步的表述。

[教師活動]為了獲得單調(diào)增函數(shù)概念,對于不同學生的表述進行分析、歸類,引導(dǎo)學生得出關(guān)鍵詞“區(qū)間內(nèi)”、“任意”、“當時,都有”。告訴他們“把滿足這些條件的函數(shù)稱之為單調(diào)增函數(shù)”,之后由他們集體給出單調(diào)增函數(shù)概念的數(shù)學表述.提出:

問題4:類比單調(diào)增函數(shù)概念,你能給出單調(diào)減函數(shù)的概念嗎?

最后完成單調(diào)性和單調(diào)區(qū)間概念的整體表述。

[設(shè)計意圖]數(shù)學概念的形成來自解決實際問題和數(shù)學自身發(fā)展的需要。但概念的高度抽象,造成了難懂、難教和難學,這就需要讓學生置身于符合自身實際的學習活動中去,從自己的`經(jīng)驗和已有的知識基礎(chǔ)出發(fā),經(jīng)歷“數(shù)學化”、“再創(chuàng)造”的活動過程。剛升入高一的學生已經(jīng)具備了一定的幾何形象思維能力,但抽象思維能力不強。從日常的描述性語言概念升華到用數(shù)學符號語言精確刻畫概念是本節(jié)課的難點。

(三)自我嘗試運用概念。

1.為了理解函數(shù)單調(diào)性的概念,及時地進行運用是十分必要的。

[教師活動]問題5:(1)你能找出氣溫圖中的單調(diào)區(qū)間嗎?(2)你能說出你學過的函數(shù)的單調(diào)區(qū)間嗎?請舉例說明。

[學生活動]對于(1),學生容易看出:氣溫圖中分別有兩個單調(diào)減區(qū)間和一個單調(diào)增區(qū)間.對于(2),學生容易舉出具體函數(shù)如:f(x)=—2x+2,f(x)=x2+2x—3,f(x)=1/x,并畫出函數(shù)的草圖,根據(jù)函數(shù)的圖象說出函數(shù)的單調(diào)區(qū)間。

[教師活動]利用實物投影儀,投影出學生畫出的草圖和標出的單調(diào)區(qū)間,并指出學生回答問題時可能出現(xiàn)的錯誤,如:在敘述函數(shù)的單調(diào)區(qū)間時寫成并集。

[設(shè)計意圖]在學生已有認知結(jié)構(gòu)的基礎(chǔ)上提出新問題,使學生明了,過去所研究的函數(shù)的相關(guān)特征,就是現(xiàn)在所學的函數(shù)的單調(diào)性,從而加深對函數(shù)單調(diào)性概念的理解。

[教師活動]問題6:證明在區(qū)間(0,+∞)上是單調(diào)減函數(shù)。

[學生活動]學生相互討論,嘗試自主進行函數(shù)單調(diào)性的證明,可能會出現(xiàn)不知如何比較f(x1)與f(x2)的大小、不會正確表述、變形不到位或根本不會變形等困難。

[教師活動]教師深入學生中,與學生交流,了解學生思考問題的進展過程,投影學生的證明過程,糾正出現(xiàn)的錯誤,規(guī)范書寫的格式。

[學生活動]學生自我歸納證明函數(shù)單調(diào)性的一般方法和操作流程:取值作差變形定號判斷。

[設(shè)計意圖]有效的數(shù)學學習過程,不能單純的模仿與記憶,數(shù)學思想的領(lǐng)悟和學習過程更是如此.利用學生自己提出的問題,讓學生在解題過程中親身經(jīng)歷和實踐體驗,師生互動學習,生生合作交流,共同探究。

(四)回顧反思深化概念。

[教師活動]給出一組題:

2、若定義在r上的單調(diào)減函數(shù)f(x)滿足f(1+a)。

[學生活動]學生互相討論,探求問題的解答和問題的解決過程,并通過問題,歸納總結(jié)本節(jié)課的內(nèi)容和方法。

[設(shè)計意圖]通過學生的主體參與,使學生深切體會到本節(jié)課的主要內(nèi)容和思想方法,從而實現(xiàn)對函數(shù)單調(diào)性認識的再次深化。

[教師活動]作業(yè)布置:

(1)閱讀課本p34-35例2。

(2)書面作業(yè):

必做:教材p431、7、11。

探究:函數(shù)y=x在定義域內(nèi)是增函數(shù),函數(shù)有兩個單調(diào)減區(qū)間,由這兩個基本函數(shù)構(gòu)成的函數(shù)的單調(diào)性如何?請證明你得到的結(jié)論。

[設(shè)計意圖]通過兩方面的作業(yè),使學生養(yǎng)成先看書,后做作業(yè)的習慣?;诤瘮?shù)單調(diào)性內(nèi)容的特點及學生實際,對課后書面作業(yè)實施分層設(shè)置,安排基本練習題、鞏固理解題和深化探究題三層。學生完成作業(yè)的形式為必做、選做和探究三種,使學生在完成必修教材基本學習任務(wù)的同時,拓展自主發(fā)展的空間,讓每一個學生都得到符合自身實踐的感悟,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學生飽滿的學習興趣,促進學生自主發(fā)展、合作探究的學習氛圍的形成。

學生學習的結(jié)果評價當然重要,但是更重要的是學生學習的過程評價。教師應(yīng)當高度重視學生學習過程中的參與度、自信心、團隊精神、合作意識、獨立思考習慣的養(yǎng)成、數(shù)學發(fā)現(xiàn)的能力,以及學習的興趣和成就感。學生熟悉的問題情境可以激發(fā)學生的學習興趣,問題串的設(shè)計可以讓更多的學生主動參與,師生對話可以實現(xiàn)師生合作,適度的研討可以促進生生交流,以及團隊精神,知識的生成和問題的解決可以讓學生感受到成功的喜悅,縝密的思考可以培養(yǎng)學生獨立思考的習慣。讓學生在教師評價、學生評價以及自我評價的過程中體驗知識的積累、探索能力的長進和思維品質(zhì)的提高,為學生的可持續(xù)發(fā)展打下基礎(chǔ)。

高中數(shù)學說課稿的評價標準篇十三

尊敬的各位教師:

大家好,我是x場的x號考生。今日,我說課的資料是xxx。

對于本節(jié)課,我將從教什么、怎樣教、為什么這么教來闡述本次說課。

教材是連接教師和學生的紐帶,在整個教學過程中起著至關(guān)重要的作用,所以,先談?wù)勎覍滩牡睦斫狻?/p>

正弦函數(shù)的性質(zhì)是選自北師大版高中數(shù)學必修四第一章三角函數(shù)第五節(jié)正弦函數(shù)的性質(zhì)與圖象5.3正弦函數(shù)的性質(zhì)的資料,主要資料便是正弦函數(shù)的性質(zhì),教材經(jīng)過作圖、觀察、誘導(dǎo)公式等方法得出正弦函數(shù)y=sinx的性質(zhì)。并且教材突出了正弦函數(shù)圖象的重要性,能夠幫忙學生更深刻的認識、理解、記憶正弦函數(shù)的性質(zhì)。

合理把握學情是上好一堂課的基礎(chǔ),本次課所應(yīng)對的學生群體具有以下特點。

高中的學生掌握了必須的基礎(chǔ)知識,思維較敏捷,動手本事較強,但理解本事、自主學習本事較缺乏?;诖耍竟?jié)課注重引導(dǎo)學生動腦思考,更富有啟發(fā)性。并且學生的自尊心較強,所以對學生的評價注重先揚后抑,鼓勵學生多多發(fā)言,還能夠?qū)W生進行正確引導(dǎo)。

根據(jù)以上對教材的分析以及對學情的把握,我制定了如下三維目標:

(一)知識與技能。

會用正弦函數(shù)圖象研究和理解正弦函數(shù)的性質(zhì),能熟練運用正弦函數(shù)的性質(zhì)解決問題。

(二)過程與方法。

經(jīng)過正弦函數(shù)的圖象,探索正弦函數(shù)的性質(zhì),提升邏輯思考、歸納總結(jié)的本事。

(三)情感態(tài)度價值觀。

經(jīng)過本節(jié)的學習體驗數(shù)學的嚴謹性,養(yǎng)成細心觀察、認真分析、嚴謹認真的良好思維習慣和不斷探求新知識的精神。

本著新課程標準,吃透教材,了解學生特點的基礎(chǔ)上我確定了以下重難點。

由正弦函數(shù)的圖象得到正弦函數(shù)的性質(zhì)。

正弦函數(shù)的周期性和單調(diào)性。

此刻的文盲不是不懂字的人,而是沒有掌握學習方法的人。因而在本節(jié)課我將采用講授法、探究法、練習法等教學方法,我在教學過程中異常重視對學生的引導(dǎo),讓學生從機械的學答中向?qū)W問轉(zhuǎn)變,從學會到會學,成為真正學習的主人。

在這節(jié)課的教學過程中,我注重突出重點,條理清晰,緊湊合理。各項活動的安排也注重互動、交流,最大限度的調(diào)動學生參與課堂的進取性、主動性。

(一)新課導(dǎo)入。

首先是導(dǎo)入環(huán)節(jié),在這一環(huán)節(jié)中我將采用復(fù)習的導(dǎo)入方法。

我會讓學生回憶正弦函數(shù)的概念,以及上節(jié)課所學的正弦函數(shù)圖象,讓學生根據(jù)圖象思考正弦函數(shù)有哪些性質(zhì)從而引出課題——《正弦函數(shù)的性質(zhì)》。

這樣設(shè)計能夠讓學生對前面的知識進行充分的回顧,為本節(jié)課的順利開展奠定基礎(chǔ)。

(二)新知探索。

接下來是新課講授環(huán)節(jié),在這一環(huán)節(jié)我將采用講解法、小組合作探究的方式進行。

讓學生自我經(jīng)過五點作圖法畫出正弦函數(shù)的圖象,并在大屏幕上展示正弦函數(shù)的標準圖象。

學生一邊看投影,一邊思考如下問題:

(1)正弦函數(shù)的定義域是什么。

(2)正弦函數(shù)的值域是什么。

(3)正弦函數(shù)的最值情景如何。

(4)正弦函數(shù)的周期。

(5)正弦函數(shù)的奇偶性。

(6)正弦函數(shù)的遞增區(qū)間。

給學生十分鐘的時間小組討論,之后小組代表發(fā)言,師生共同總結(jié)。

1.定義域:y=sinx定義域為r。

2.值域:引導(dǎo)學生回憶單位圓中的正弦函數(shù)線,發(fā)現(xiàn)值域為[-1,1]。

3.最值:根據(jù)值域的確定得到在何處取得最值以及函數(shù)的正負性。

4.周期性:經(jīng)過觀察圖象引導(dǎo)學生發(fā)現(xiàn)正弦函數(shù)的圖象是有規(guī)律不斷重復(fù)出現(xiàn)的,讓學生思考后發(fā)現(xiàn)是每隔2π重復(fù)出現(xiàn)一次,得出y=sinx的最小正周期是2π。之后經(jīng)過誘導(dǎo)公式證明。

5.奇偶性:在剛才經(jīng)過誘導(dǎo)公式證明后順勢提出公式,總結(jié)得到正弦函數(shù)是奇函數(shù)。

6.單調(diào)性:最終讓學生根據(jù)剛才所得到的結(jié)論自我嘗試總結(jié)正弦函數(shù)的單調(diào)性。

在探究完正弦函數(shù)性質(zhì)后,利用單位圓和正弦函數(shù)圖象理解和記憶正弦函數(shù)的性質(zhì),這樣的安排能夠讓學生及時鞏固正弦函數(shù)的性質(zhì),并且還能夠結(jié)合之前所學的單位圓,三角函數(shù)線等知識,讓學生感受到知識間的聯(lián)系。

(三)課堂練習。

第三環(huán)節(jié)是鞏固環(huán)節(jié),多媒體出示書上例題2:用五點法畫出函數(shù)的簡圖,并根據(jù)圖象討論它的性質(zhì)。

經(jīng)過這樣的練習,既鞏固了學生學過的知識,又進一步培養(yǎng)了學生理解、分析、推理的本事,趣味的知識在學生們的積極主動的探索中顯得更有味道。

(四)小結(jié)作業(yè)。

最終一個環(huán)節(jié)為小結(jié)作業(yè)環(huán)節(jié),關(guān)于課堂小結(jié),我打算讓學生自我來總結(jié)。這樣既發(fā)揮了學生的主體性,又能夠提高學生的總結(jié)概括本事,讓我在第一時間得到學習反饋,及時加以疏導(dǎo)。

在作業(yè)布置上,我讓學生思考余弦函數(shù)的圖象與性質(zhì)是什么樣的。

經(jīng)過比較靈活的題目呈現(xiàn),能夠讓學生結(jié)合本節(jié)課的知識進而思考后續(xù)的知識。

我的板書設(shè)計遵循簡介明了突出重點部分,以下是我的板書設(shè)計:

(略)。

高中數(shù)學說課稿的評價標準篇十四

導(dǎo)過程;能根據(jù)條件確定橢圓的標準方程,掌握用待定系數(shù)法求橢圓的標準方程。

(2)過程與方法目標:通過對橢圓概念的引入教學,培養(yǎng)學生的觀察能力和探。

索能力;通過對橢圓標準方程的推導(dǎo),使學生進一步掌握求曲線方程的一般方法,提高學生運用坐標法解決幾何問題的能力,并滲透數(shù)形結(jié)合和等價轉(zhuǎn)化的數(shù)學思想方法。

(3)情感、態(tài)度與價值觀目標:通過讓學生大膽探索橢圓的定義和標準方程,激發(fā)學生學習數(shù)學的積極性,培養(yǎng)學生的學習興趣和創(chuàng)新意識,培養(yǎng)學生勇于探索的精神和滲透辯證唯物主義的方法論和認識論。

(1)教學重點:橢圓的定義及橢圓標準方程,用待定系數(shù)法和定義法求曲線方程。

(2)教學難點:橢圓標準方程的建立和推導(dǎo)。

1、動畫演示,描繪出橢圓軌跡圖形。

2、實驗演示。

思考:橢圓是滿足什么條件的點的軌跡呢?

1、動手實驗:學生分組動手畫出橢圓。

實驗探究:

保持繩長不變,改變兩個圖釘之間的距離,畫出的橢圓有什么變化?

思考:根據(jù)上面探究實踐回答,橢圓是滿足什么條件的點的軌跡?

2、概括橢圓定義。

引導(dǎo)學生概括橢圓定義橢圓定義:平面內(nèi)與兩個定點距離的和等于常數(shù)(大于)的點的軌跡叫橢圓。

教師指出:這兩個定點叫橢圓的焦點,兩焦點的距離叫橢圓的焦距。

思考:焦點為的橢圓上任一點m,有什么性質(zhì)?

令橢圓上任一點m,則有。

1、知識回顧:利用坐標法求曲線方程的一般方法和步驟是什么?

2、研討探究。

問題:如圖已知焦點為的橢圓,且=2c,對橢圓上任一點m,有。

嘗試推導(dǎo)橢圓的方程。

思考:如何建立坐標系,使求出的方程更為簡單?

將各組學生的討論方案歸納起來評議,選定以下兩種方案,由各組學生自己完成設(shè)點、列式、化簡。

方案一方案二。

按方案一建立坐標系,師生研討探究得到橢圓標準方程。

=1(),其中b2=a2-c2(b0);

選定方案二建立坐標系,由學生完成方程化簡過程,可得出=1,同樣也有a2-c2=b2(b0)。

教師指出:我們所得的兩個方程=1和=1()都是橢圓的標準方程。

1、觀察橢圓圖形及其標準方程,師生共同總結(jié)歸納。

(1)橢圓標準方程對應(yīng)的橢圓中心在原點,以焦點所在軸為坐標軸;

(2)橢圓標準方程形式:左邊是兩個分式的平方和,右邊是1;

(3)橢圓標準方程中三個參數(shù)a,b,c關(guān)系:;

(4)橢圓焦點的位置由標準方程中分母的大小確定;

(5)求橢圓標準方程時,可運用待定系數(shù)法求出a,b的值。

2、在歸納總結(jié)的基礎(chǔ)上,填下表。

標準方程。

圖形a,b,c關(guān)系焦點坐標焦點位置。

在x軸上。

在y軸上。

例1、求適合下列條件的橢圓的標準方程。

(1)兩個焦點的坐標分別是,橢圓上一點p到兩焦點距離和等于10。

(2)兩焦點坐標分別是,并且橢圓經(jīng)過點。

例2、(1)若橢圓標準方程為及焦點坐標。

(2)若橢圓經(jīng)過兩點求橢圓標準方程。

(3)若橢圓的一個焦點是,則k的值為。

(a)(b)8(c)(d)32。

例3、如圖,已知一個圓的圓心為坐標原點,半徑為2,從這個圓上任意一點p向x軸作垂線段,求線段中點m的軌跡。

1、寫出適合下列條件的橢圓標準方程。

(1),焦點在x軸上;

(2)焦點在x軸上,焦距等于4,并且經(jīng)過點p;

2、若方程表示焦點在y軸上的橢圓,則k的范圍。

3、已知b,c是兩個定點,周長為16,求頂點a的軌跡方程。

4、已知橢圓的焦距相等,求實數(shù)m的值。

5、在橢圓上上求一點,使它與兩個焦點連線互相垂直。

6、已知p是橢圓上一點,其中為其焦點且,求三解形面積。

師生共同歸納本節(jié)所學內(nèi)容、知識規(guī)律以及所學的數(shù)學思想和方法。

課本第96頁習題§8。1第3題、第5題、第6題。

課后思考題:

1、知是橢圓的兩個焦點,ab是過的弦,則周長是。

(a)2a(b)4a(c)8a(d)2a2b。

2、的兩個頂點a,b的坐標分別是邊ac,bc所在直線的斜。

率之積等于,求頂點c的軌跡方程。

2、與圓外切,同時與圓內(nèi)切,求動圓圓心的軌跡方程,并說明它是什么樣的曲線?

橢圓是圓錐曲線中重要的一種,本節(jié)內(nèi)容的學習是后繼學習其它圓錐曲線的基礎(chǔ),坐標法是解析幾何中的重要數(shù)學方法,橢圓方程的推導(dǎo)是利用坐標法求曲線方程的很好應(yīng)用實例。本節(jié)課內(nèi)容的學習能很好地在課堂教學中展現(xiàn)新課程的理念,主要采用學生自主探究學習的方式,使培養(yǎng)學生的探索精神和創(chuàng)新能力的教學思想貫穿于本節(jié)課教學設(shè)計的始終。

橢圓是生活中常見的圖形,通過實驗演示,創(chuàng)設(shè)生動而直觀的情境,使學生親身體會橢圓與生活聯(lián)系,有助于激發(fā)學生對橢圓知識的學習興趣;在橢圓概念引入的過程中,改變了直接給出橢圓概念和動畫畫出橢圓的方式,而采用學生動手畫橢圓并合作探究的學習方式,讓學生親身經(jīng)歷橢圓概念形成的數(shù)學化過程,有利于培養(yǎng)學生觀察分析、抽象概括的能力。

橢圓方程的化簡是學生從未經(jīng)歷的問題,方程的推導(dǎo)過程采用學生分組探究,師生共同研討方程的化簡和方程的特征,可以讓學生主體參與橢圓方程建立的具體過程,使學生真正了解橢圓標準方程的來源,并在這種師生嘗試探究、合作討論的活動中,使學生體會成功的快樂,提高學生的數(shù)學探究能力,培養(yǎng)學生獨立主動獲取知識的能力。

設(shè)計例題、習題的研討探究變式訓練,是為了讓學生能靈活地運用橢圓的知識解決問題,同時也是為了更好地調(diào)動、活躍學生的思維,發(fā)展學生數(shù)學思維能力,讓學生在解決問題中發(fā)展學生的數(shù)學應(yīng)用意識和創(chuàng)新能力,同時培養(yǎng)學生大膽實踐、勇于探索的精神,開闊學生知識應(yīng)用視野。

將本文的word文檔下載到電腦,方便收藏和打印。

高中數(shù)學說課稿的評價標準篇十五

1、地位、作用和特點:

《 》是高中數(shù)學課本第 冊( 修)的第 章“ ”的第 節(jié)內(nèi)容,高中數(shù)學課本說課稿。

本節(jié)是在學習了 之后編排的。通過本節(jié)課的學習,既可以對 的知識進一步鞏固和深化,又可以為后面學習 打下基礎(chǔ),所以是本章的重要內(nèi)容。此外,《 》的知識與我們?nèi)粘I?、生產(chǎn)、科學研究 有著密切的聯(lián)系,因此學習這部分有著廣泛的現(xiàn)實意義。

教學目標:

根據(jù)《教學大綱》的要求和學生已有的知識基礎(chǔ)和認知能力,確定以下教學目標:

(1)知識目標:a、b、c

(2)能力目標:a、b、c

(3)德育目標:a、b

教學的重點和難點:

(1)教學重點:

(2)教學難點:

基于上面的教材分析,我根據(jù)自己對研究性學習“啟發(fā)式”教學模式和新課程改革的理論認識,結(jié)合本校學生實際,主要突出了幾個方面:一是創(chuàng)設(shè)問題情景,充分調(diào)動學生求知欲,并以此來激發(fā)學生的探究心理。二是運用啟發(fā)式教學方法,就是把教和學的各種方法綜合起來統(tǒng)一組織運用于教學過程,以求獲得最佳效果。另外還注意獲得和交換信息渠道的綜合、教學手段的綜合和課堂內(nèi)外的綜合。并且在整個教學設(shè)計盡量做到注意學生的心理特點和認知規(guī)律,觸發(fā)學生的思維,使教學過程真正成為學生的學習過程,以思維教學代替單純的記憶教學。三是注重滲透數(shù)學思考方法(聯(lián)想法、類比法、數(shù)形結(jié)合等一般科學方法)。讓學生在探索學習知識的過程中,領(lǐng)會常見數(shù)學思想方法,培養(yǎng)學生的探索能力和創(chuàng)造性素質(zhì)。四是注意在探究問題時留給學生充分的時間,以利于開放學生的思維。當然這就應(yīng)在處理教學內(nèi)容時能夠做到葉老師所說“教就是為了不教”。因此,擬對本節(jié)課設(shè)計如下教學程序:

導(dǎo)入新課 新課教學

反饋發(fā)展

學生學習的過程實際上就是學生主動獲取、整理、貯存、運用知識和獲得學習能力的過程,因此,我覺得在教學中,指導(dǎo)學生學習時,應(yīng)盡量避免單純地、直露地向?qū)W生灌輸某種學習方法。有效的能被學生接受的學法指導(dǎo)應(yīng)是滲透在教學過程中進行的,是通過優(yōu)化教學程序來增強學法指導(dǎo)的目的性和實效性。在本節(jié)課的教學中主要滲透以下幾個方面的學法指導(dǎo)。

1、培養(yǎng)學生學會通過自學、觀察、實驗等方法獲取相關(guān)知識,使學生在探索研究過程中分析、歸納、推理能力得到提高。

本節(jié)教師通過列舉具體事例來進行分析,歸納出 ,并依

據(jù)此知識與具體事例結(jié)合、推導(dǎo)出 ,這正是一個分析和推理的全過程。

演示,創(chuàng)設(shè)探索 規(guī)律的情境,引導(dǎo)學生以可靠的事實為基礎(chǔ),經(jīng)過抽象思維揭示內(nèi)在規(guī)律,從而使學生領(lǐng)悟到把可靠的事實和深刻的理論思維結(jié)合起來的'特點。

3、讓學生在探索性實驗中自己摸索方法,觀察和分析現(xiàn)象,從而發(fā)現(xiàn)“新”的問題或探索出“新”的規(guī)律。從而培養(yǎng)學生的發(fā)散思維和收斂思維能力,激發(fā)學生的創(chuàng)造動力。在實踐中要盡可能讓學生多動腦、多動手、多觀察、多交流、多分析;老師要給學生多點撥、多啟發(fā)、多激勵,不斷地尋找學生思維和操作上的閃光點,及時總結(jié)和推廣。

4、在指導(dǎo)學生解決問題時,引導(dǎo)學生通過比較、猜測、嘗試、質(zhì)疑、發(fā)現(xiàn)等探究環(huán)節(jié)選擇合適的概念、規(guī)律和解決問題方法,從而克服思維定勢的消極影響,促進知識的正向遷移。如教師引導(dǎo)學生對比中,蘊含的本質(zhì)差異,從而擺脫知識遷移的負面影響。這樣,既有利于學生養(yǎng)成認真分析過程、善于比較的好習慣,又有利于培養(yǎng)學生通過現(xiàn)象發(fā)掘知識內(nèi)在本質(zhì)的能力。

(一)、課題引入:

教師創(chuàng)設(shè)問題情景(創(chuàng)設(shè)情景:a、教師演示實驗。b、使用多媒體模擬一些比較有趣、與生活實踐比較有關(guān)的事例。c、講述數(shù)學科學史上的有關(guān)情況。)激發(fā)學生的探究欲望,引導(dǎo)學生提出接下去要研究的問題。

(二)、新課教學:

1、針對上面提出的問題,設(shè)計學生動手實踐,讓學生通過動手探索有關(guān)的知識,并引導(dǎo)學生進行交流、討論得出新知,并進一步提出下面的問題。

2、組織學生進行新問題的實驗方法設(shè)計—這時在設(shè)計上最好是有對比性、數(shù)學方法性的設(shè)計實驗,指導(dǎo)學生實驗、通過多媒體的輔助,顯示學生的實驗數(shù)據(jù),模擬強化出實驗情況,由學生分析比較,歸納總結(jié)出知識的結(jié)構(gòu)。

(三)、實施反饋:

1、課堂反饋,遷移知識(最好遷移到與生活有關(guān)的例子)。讓學生分析有關(guān)的問題,實現(xiàn)知識的升華、實現(xiàn)學生的再次創(chuàng)新。

2、課后反饋,延續(xù)創(chuàng)新。通過課后練習,學生互改作業(yè),課后研實驗,實現(xiàn)課堂內(nèi)外的綜合,實現(xiàn)創(chuàng)新精神的延續(xù)。

在教學中我把黑板分為三部分,把知識要點寫在左側(cè),中間知識推導(dǎo)過程,右邊實例應(yīng)用。

以上是我對《 》這節(jié)教材的認識和對教學過程的設(shè)計。在整個課堂中,我引導(dǎo)學生回顧前面學過的 知識,并把它運用到對的認識,使學生的認知活動逐步深化,既掌握了知識,又學會了方法。

總之,對課堂的設(shè)計,我始終在努力貫徹以教師為主導(dǎo),以學生為主體,以問題為基礎(chǔ),以能力、方法為主線,有計劃培養(yǎng)學生的自學能力、觀察和實踐能力、思維能力、應(yīng)用知識解決實際問題的能力和創(chuàng)造能力為指導(dǎo)思想。并且能從各種實際出發(fā),充分利用各種教學手段來激發(fā)學生的學習興趣,體現(xiàn)了對學生創(chuàng)新意識的培養(yǎng)。

高中數(shù)學說課稿的評價標準篇十六

導(dǎo)過程;能根據(jù)條件確定橢圓的標準方程,掌握用待定系數(shù)法求橢圓的標準方程。

(2)過程與方法目標:通過對橢圓概念的引入教學,培養(yǎng)學生的觀察能力和探

索能力;通過對橢圓標準方程的推導(dǎo),使學生進一步掌握求曲線方程的一般方法,提高學生運用坐標法解決幾何問題的能力,并滲透數(shù)形結(jié)合和等價轉(zhuǎn)化的數(shù)學思想方法。

(3)情感、態(tài)度與價值觀目標:通過讓學生大膽探索橢圓的定義和標準方程,激發(fā)學生學習數(shù)學的積極性,培養(yǎng)學生的學習興趣和創(chuàng)新意識,培養(yǎng)學生勇于探索的精神和滲透辯證唯物主義的方法論和認識論。

(1)教學重點:橢圓的定義及橢圓標準方程,用待定系數(shù)法和定義法求曲線方程。

(2)教學難點:橢圓標準方程的建立和推導(dǎo)。

1、動畫演示,描繪出橢圓軌跡圖形。

2、實驗演示。

思考:橢圓是滿足什么條件的點的軌跡呢?

1、動手實驗:學生分組動手畫出橢圓。

實驗探究:

保持繩長不變,改變兩個圖釘之間的距離,畫出的橢圓有什么變化?

思考:根據(jù)上面探究實踐回答,橢圓是滿足什么條件的點的軌跡?

2、概括橢圓定義

引導(dǎo)學生概括橢圓定義橢圓定義:平面內(nèi)與兩個定點距離的和等于常數(shù)(大于)的點的軌跡叫橢圓。

教師指出:這兩個定點叫橢圓的焦點,兩焦點的距離叫橢圓的焦距。

思考:焦點為的橢圓上任一點m,有什么性質(zhì)?

令橢圓上任一點m,則有

1、知識回顧:利用坐標法求曲線方程的一般方法和步驟是什么?

2、研討探究

問題:如圖已知焦點為的橢圓,且=2c,對橢圓上任一點m,有

,嘗試推導(dǎo)橢圓的方程。

思考:如何建立坐標系,使求出的方程更為簡單?

將各組學生的討論方案歸納起來評議,選定以下兩種方案,由各組學生自己完成設(shè)點、列式、化簡。

方案一方案二

按方案一建立坐標系,師生研討探究得到橢圓標準方程

=1(),其中b2=a2-c2(b0);

選定方案二建立坐標系,由學生完成方程化簡過程,可得出=1,同樣也有a2-c2=b2(b0)。

教師指出:我們所得的兩個方程=1和=1()都是橢圓的標準方程。

1、觀察橢圓圖形及其標準方程,師生共同總結(jié)歸納

(1)橢圓標準方程對應(yīng)的橢圓中心在原點,以焦點所在軸為坐標軸;

(2)橢圓標準方程形式:左邊是兩個分式的平方和,右邊是1;

(3)橢圓標準方程中三個參數(shù)a,b,c關(guān)系:;

(4)橢圓焦點的位置由標準方程中分母的大小確定;

(5)求橢圓標準方程時,可運用待定系數(shù)法求出a,b的值。

2、在歸納總結(jié)的基礎(chǔ)上,填下表

標準方程

圖形a,b,c關(guān)系焦點坐標焦點位置

在x軸上

在y軸上

例1、求適合下列條件的橢圓的標準方程

(1)兩個焦點的坐標分別是,橢圓上一點p到兩焦點距離和等于10。

(2)兩焦點坐標分別是,并且橢圓經(jīng)過點。

例2、(1)若橢圓標準方程為及焦點坐標。

(2)若橢圓經(jīng)過兩點求橢圓標準方程。

(3)若橢圓的一個焦點是,則k的值為。

(a)(b)8(c)(d)32

例3、如圖,已知一個圓的圓心為坐標原點,半徑為2,從這個圓上任意一點p向x軸作垂線段,求線段中點m的軌跡。

1、寫出適合下列條件的橢圓標準方程

(1),焦點在x軸上;

(2)焦點在x軸上,焦距等于4,并且經(jīng)過點p;

2、若方程表示焦點在y軸上的橢圓,則k的范圍。

3、已知b,c是兩個定點,周長為16,求頂點a的軌跡方程。

4、已知橢圓的焦距相等,求實數(shù)m的值。

5、在橢圓上上求一點,使它與兩個焦點連線互相垂直。

6、已知p是橢圓上一點,其中為其焦點且,求三解形面積。

師生共同歸納本節(jié)所學內(nèi)容、知識規(guī)律以及所學的數(shù)學思想和方法。

課本第96頁習題§8。1第3題、第5題、第6題。

課后思考題:

1、知是橢圓的兩個焦點,ab是過的弦,則周長是。

(a)2a(b)4a(c)8a(d)2a2b

2、的兩個頂點a,b的坐標分別是邊ac,bc所在直線的斜

率之積等于,求頂點c的軌跡方程。

2、與圓外切,同時與圓內(nèi)切,求動圓圓心的軌跡方程,并說明它是什么樣的曲線?

教學設(shè)計說明

橢圓是圓錐曲線中重要的一種,本節(jié)內(nèi)容的學習是后繼學習其它圓錐曲線的基礎(chǔ),坐標法是解析幾何中的重要數(shù)學方法,橢圓方程的推導(dǎo)是利用坐標法求曲線方程的很好應(yīng)用實例。本節(jié)課內(nèi)容的學習能很好地在課堂教學中展現(xiàn)新課程的理念,主要采用學生自主探究學習的方式,使培養(yǎng)學生的探索精神和創(chuàng)新能力的教學思想貫穿于本節(jié)課教學設(shè)計的始終。

橢圓是生活中常見的圖形,通過實驗演示,創(chuàng)設(shè)生動而直觀的情境,使學生親身體會橢圓與生活聯(lián)系,有助于激發(fā)學生對橢圓知識的學習興趣;在橢圓概念引入的過程中,改變了直接給出橢圓概念和動畫畫出橢圓的方式,而采用學生動手畫橢圓并合作探究的學習方式,讓學生親身經(jīng)歷橢圓概念形成的數(shù)學化過程,有利于培養(yǎng)學生觀察分析、抽象概括的能力。

橢圓方程的化簡是學生從未經(jīng)歷的問題,方程的推導(dǎo)過程采用學生分組探究,師生共同研討方程的化簡和方程的特征,可以讓學生主體參與橢圓方程建立的具體過程,使學生真正了解橢圓標準方程的來源,并在這種師生嘗試探究、合作討論的活動中,使學生體會成功的快樂,提高學生的數(shù)學探究能力,培養(yǎng)學生獨立主動獲取知識的能力。

設(shè)計例題、習題的研討探究變式訓練,是為了讓學生能靈活地運用橢圓的知識解決問題,同時也是為了更好地調(diào)動、活躍學生的思維,發(fā)展學生數(shù)學思維能力,讓學生在解決問題中發(fā)展學生的數(shù)學應(yīng)用意識和創(chuàng)新能力,同時培養(yǎng)學生大膽實踐、勇于探索的精神,開闊學生知識應(yīng)用視野。

您可能關(guān)注的文檔