
- 時(shí)間:2023-12-15 20:40:04
- 小編:GZ才子
- 文件格式 DOC



工作學(xué)習(xí)中一定要善始善終,只有總結(jié)才標(biāo)志工作階段性完成或者徹底的終止。通過(guò)總結(jié)對(duì)工作學(xué)習(xí)進(jìn)行回顧和分析,從中找出經(jīng)驗(yàn)和教訓(xùn),引出規(guī)律性認(rèn)識(shí),以指導(dǎo)今后工作和實(shí)踐活動(dòng)。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的總結(jié)嗎?以下是小編為大家收集的總結(jié)范文,僅供參考,大家一起來(lái)看看吧。
高一必修二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)人教版篇一
基本初等函數(shù)性質(zhì)的考查,以導(dǎo)數(shù)知識(shí)為背景的函數(shù)問(wèn)題;以向量知識(shí)為背景的函數(shù)問(wèn)題;從具體函數(shù)的考查轉(zhuǎn)向抽象函數(shù)考查;從重結(jié)果考查轉(zhuǎn)向重過(guò)程考查;從熟悉情景的考查轉(zhuǎn)向新穎情景的考查。
向量具有數(shù)與形的雙重性,高考中向量試題的命題趨向:考查平面向量的基本概念和運(yùn)算律;考查平面向量的坐標(biāo)運(yùn)算;考查平面向量與幾何、三角、代數(shù)等學(xué)科的綜合性問(wèn)題。
突出工具性,淡化獨(dú)立性,突出解,是不等式命題的新取向。高考中不等式試題的命題趨向:基本的線性規(guī)劃問(wèn)題為必考內(nèi)容,不等式的性質(zhì)與指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、三角函數(shù)、二交函數(shù)等結(jié)合起來(lái),考查不等式的性質(zhì)、最值、函數(shù)的單調(diào)性等;證明不等式的試題,多以函數(shù)、數(shù)列、解析幾何等知識(shí)為背景,在知識(shí)網(wǎng)絡(luò)的交匯處命題,綜合性強(qiáng),能力要求高;解不等式的試題,往往與公式、根式和參數(shù)的討論聯(lián)系在一起。考查學(xué)生的等價(jià)轉(zhuǎn)化能力和分類討論能力;以當(dāng)前經(jīng)濟(jì)、社會(huì)生產(chǎn)、生活為背景與不等式綜合的應(yīng)用題仍將是高考的熱點(diǎn),主要考查學(xué)生閱讀理解能力以及分析問(wèn)題、解決問(wèn)題的能力。
20xx年已經(jīng)變得簡(jiǎn)單,20xx年難度依然不大,基本的三視圖的考查難點(diǎn)不大,以及球與幾何體的組合體,涉及切,接的問(wèn)題,線面垂直、平行位置關(guān)系的考查,已經(jīng)線面角,面面角和幾何體的體積計(jì)算等問(wèn)題,都是重點(diǎn)考查內(nèi)容。
小題主要涉及圓錐曲線方程,和直線與圓的位置關(guān)系,以及圓錐曲線幾何性質(zhì)的考查,極坐標(biāo)下的解析幾何知識(shí),解答題主要考查直線和圓的知識(shí),直線與圓錐曲線的知識(shí),涉及圓錐曲線方程,直線與圓錐曲線方程聯(lián)立,定點(diǎn),定值,范圍的考查,考試的難度降低。
導(dǎo)數(shù)的考查還是以理科19題,文科20題的形式給出,從常見函數(shù)入手,導(dǎo)數(shù)工具作用(切線和單調(diào)性)的考查,綜合性強(qiáng),能力要求高;往往與公式、導(dǎo)數(shù)往往與參數(shù)的討論聯(lián)系在一起,考查轉(zhuǎn)化與化歸能力,但今年的難點(diǎn)整體偏低。
答案不,或是邏輯推理題,以及解答題中的開放型試題的考查,都是重點(diǎn),理科13,文科14題。
高一必修二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)人教版篇二
2、函數(shù)單調(diào)性的判斷和證明:
(1)定義法。
(2)復(fù)合函數(shù)分析法。
(3)導(dǎo)數(shù)證明法。
(4)圖象法。
二、函數(shù)的奇偶性和周期性。
1、函數(shù)的奇偶性和周期性的定義。
2、函數(shù)的奇偶性的判定和證明方法。
3、函數(shù)的周期性的判定方法。
三、函數(shù)的圖象。
1、函數(shù)圖象的作法。
(1)描點(diǎn)法。
(2)圖象變換法。
2、圖象變換包括圖象:
平移變換、伸縮變換、對(duì)稱變換、翻折變換。
高一必修二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)人教版篇三
一個(gè)東西是集合還是元素并不是絕對(duì)的,很多情況下是相對(duì)的,集合是由元素組成的集合,元素是組成集合的元素。
例如:你所在的班級(jí)是一個(gè)集合,是由幾十個(gè)和你同齡的同學(xué)組成的集合,你相對(duì)于這個(gè)班級(jí)集合來(lái)說(shuō),是它的一個(gè)元素;而整個(gè)學(xué)校又是由許許多多個(gè)班級(jí)組成的集合,你所在的班級(jí)只是其中的一分子,是一個(gè)元素。
班級(jí)相對(duì)于你是集合,相對(duì)于學(xué)校是元素,參照物不同,得到的結(jié)論也不同,可見,是集合還是元素,并不是絕對(duì)的。
解集合問(wèn)題的關(guān)鍵。
解集合問(wèn)題的關(guān)鍵:弄清集合是由哪些元素所構(gòu)成的,也就是將抽象問(wèn)題具體化、形象化,將特征性質(zhì)描述法表示的集合用列舉法來(lái)表示,或用韋恩圖來(lái)表示抽象的集合,或用圖形來(lái)表示集合;比如用數(shù)軸來(lái)表示集合,或是集合的元素為有序?qū)崝?shù)對(duì)時(shí),可用平面直角坐標(biāo)系中的圖形表示相關(guān)的集合等。
高一必修二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)人教版篇四
本節(jié)知識(shí)包括函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對(duì)稱性和函數(shù)的圖象等知識(shí)點(diǎn)。函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對(duì)稱性是學(xué)習(xí)函數(shù)的圖象的基礎(chǔ),函數(shù)的圖象是它們的綜合。所以理解了前面的幾個(gè)知識(shí)點(diǎn),函數(shù)的圖象就迎刃而解了。
1、函數(shù)單調(diào)性的定義。
2、函數(shù)單調(diào)性的判斷和證明:
(1)定義法。
(2)復(fù)合函數(shù)分析法。
(3)導(dǎo)數(shù)證明法。
(4)圖象法。
1、函數(shù)的奇偶性和周期性的定義。
2、函數(shù)的奇偶性的判定和證明方法。
3、函數(shù)的周期性的判定方法。
1、函數(shù)圖象的作法。
(1)描點(diǎn)法。
(2)圖象變換法。
2、圖象變換包括圖象:平移變換、伸縮變換、對(duì)稱變換、翻折變換。
本節(jié)是段考和高考必不可少的考查內(nèi)容,是段考和高考考查的重點(diǎn)和難點(diǎn)。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數(shù)學(xué)的每一章聯(lián)合考查,多屬于拔高題。多考查函數(shù)的單調(diào)性、最值和圖象等。
1、求函數(shù)的單調(diào)區(qū)間,必須先求函數(shù)的定義域,即遵循“函數(shù)問(wèn)題定義域優(yōu)先的原則”。
2、單調(diào)區(qū)間必須用區(qū)間來(lái)表示,不能用集合或不等式,單調(diào)區(qū)間一般寫成開區(qū)間,不必考慮端點(diǎn)問(wèn)題。
3、在多個(gè)單調(diào)區(qū)間之間不能用“或”和“”連接,只能用逗號(hào)隔開。
4、判斷函數(shù)的奇偶性,首先必須考慮函數(shù)的定義域,如果函數(shù)的定義域不關(guān)于原點(diǎn)對(duì)稱,則函數(shù)一定是非奇非偶函數(shù)。
5、作函數(shù)的圖象,一般是首先化簡(jiǎn)解析式,然后確定用描點(diǎn)法或圖象變換法作函數(shù)的圖象。
高一必修二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)人教版篇五
定理總結(jié)公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線上的所有的點(diǎn)都在這個(gè)平面內(nèi)。公理2:如果兩個(gè)平面有一個(gè)公共點(diǎn),那么它們有且只有一條通過(guò)這個(gè)點(diǎn)的公共直線。公理3:過(guò)不在同一條直線上的三個(gè)點(diǎn),有且只有一個(gè)平面。
推論1:經(jīng)過(guò)一條直線和這條直線外一點(diǎn),有且只有一個(gè)平面。
推論2:經(jīng)過(guò)兩條相交直線,有且只有一個(gè)平面。
推論3:經(jīng)過(guò)兩條平行直線,有且只有一個(gè)平面。
公理4:平行于同一條直線的兩條直線互相平行。
等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行并且方向相同,那么這兩個(gè)角相等。
高一必修二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)人教版篇六
對(duì)數(shù)函數(shù)的一般形式為,它實(shí)際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對(duì)于a的規(guī)定,同樣適用于對(duì)數(shù)函數(shù)。
右圖給出對(duì)于不同大小a所表示的函數(shù)圖形:
可以看到對(duì)數(shù)函數(shù)的圖形只不過(guò)的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對(duì)稱圖形,因?yàn)樗鼈兓榉春瘮?shù)。
(1)對(duì)數(shù)函數(shù)的定義域?yàn)榇笥?的實(shí)數(shù)集合。
(2)對(duì)數(shù)函數(shù)的值域?yàn)槿繉?shí)數(shù)集合。
(3)函數(shù)總是通過(guò)(1,0)這點(diǎn)。
(4)a大于1時(shí),為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時(shí),函數(shù)為單調(diào)遞減函數(shù),并且下凹。
(5)顯然對(duì)數(shù)函數(shù)。
高一必修二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)人教版篇七
對(duì)數(shù)函數(shù)的一般形式為,它實(shí)際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對(duì)于a的規(guī)定,同樣適用于對(duì)數(shù)函數(shù)。
對(duì)于不同大小a所表示的函數(shù)圖形:
可以看到對(duì)數(shù)函數(shù)的圖形只不過(guò)的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對(duì)稱圖形,因?yàn)樗鼈兓榉春瘮?shù)。
(1)對(duì)數(shù)函數(shù)的定義域?yàn)榇笥?的實(shí)數(shù)集合。
(2)對(duì)數(shù)函數(shù)的值域?yàn)槿繉?shí)數(shù)集合。
(3)函數(shù)總是通過(guò)(1,0)這點(diǎn)。
(4)a大于1時(shí),為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時(shí),函數(shù)為單調(diào)遞減函數(shù),并且下凹。
(5)顯然對(duì)數(shù)函數(shù)無(wú)界。
高一必修二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)人教版篇八
集合的中元素的三個(gè)特性:
元素的確定性如:世界上的山。
元素的互異性如:由happy的字母組成的集合{h,a,p,y}。
元素的無(wú)序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合。
3。集合的表示:{…}如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}。
用拉丁字母表示集合:a={我校的籃球隊(duì)員},b={1,2,3,4,5}。
集合的表示方法:列舉法與描述法。
注意:常用數(shù)集及其記法:
非負(fù)整數(shù)集(即自然數(shù)集)記作:n。
正整數(shù)集n_n+整數(shù)集z有理數(shù)集q實(shí)數(shù)集r。
列舉法:{a,b,c……}。
語(yǔ)言描述法:例:{不是直角三角形的三角形}。
venn圖:
4、集合的分類:
有限集含有有限個(gè)元素的集合。
無(wú)限集含有無(wú)限個(gè)元素的集合。
空集不含任何元素的集合例:{x|x2=—5}。
您可能關(guān)注的文檔
- 最新交通安全的國(guó)旗下講話稿篇(精選16篇)
- 初三化學(xué)教學(xué)反思(實(shí)用10篇)
- 初三化學(xué)教學(xué)反思(模板15篇)
- 2023年初三化學(xué)教學(xué)反思(精選10篇)
- 公務(wù)員個(gè)人總結(jié)(精選9篇)
- 最新大學(xué)青春演講稿題目 大學(xué)青春演講稿(優(yōu)秀17篇)
- 2023年中學(xué)政教處工作總結(jié)報(bào)告(大全10篇)
- 2023年程序員加薪申請(qǐng)書(精選8篇)
- 2023年委托合同解除需要對(duì)方同意嗎(大全10篇)
- 最新湯姆索亞歷險(xiǎn)記讀后感(優(yōu)秀11篇)
- 學(xué)生會(huì)秘書處的職責(zé)和工作總結(jié)(專業(yè)17篇)
- 教育工作者分享故事的感悟(熱門18篇)
- 學(xué)生在大學(xué)學(xué)生會(huì)秘書處的工作總結(jié)大全(15篇)
- 行政助理的自我介紹(專業(yè)19篇)
- 職業(yè)顧問(wèn)的職業(yè)發(fā)展心得(精選19篇)
- 法治興則民族興的實(shí)用心得體會(huì)(通用15篇)
- 教師在社區(qū)團(tuán)委的工作總結(jié)(模板19篇)
- 教育工作者的社區(qū)團(tuán)委工作總結(jié)(優(yōu)質(zhì)22篇)
- 體育教練軍訓(xùn)心得體會(huì)(優(yōu)秀19篇)
- 學(xué)生軍訓(xùn)心得體會(huì)范文(21篇)
- 青年軍訓(xùn)第二天心得(實(shí)用18篇)
- 警察慰問(wèn)春節(jié)虎年家屬的慰問(wèn)信(優(yōu)秀18篇)
- 家屬慰問(wèn)春節(jié)虎年的慰問(wèn)信(實(shí)用20篇)
- 公務(wù)員慰問(wèn)春節(jié)虎年家屬的慰問(wèn)信(優(yōu)質(zhì)21篇)
- 植物生物學(xué)課程心得體會(huì)(專業(yè)20篇)
- 政府官員參與新冠肺炎疫情防控工作方案的重要性(匯總23篇)
- 大學(xué)生創(chuàng)業(yè)計(jì)劃競(jìng)賽范文(18篇)
- 教育工作者行政工作安排范文(15篇)
- 編輯教學(xué)秘書的工作總結(jié)(匯總17篇)
- 學(xué)校行政人員行政工作職責(zé)大全(18篇)
相關(guān)文檔
-
2023年壓瘡的護(hù)理記錄范文(優(yōu)質(zhì)8篇)
43下載數(shù) 218閱讀數(shù)
-
個(gè)人學(xué)習(xí)和工作情況總結(jié)優(yōu)秀(通用20篇)
38下載數(shù) 672閱讀數(shù)
-
最新審計(jì)案例分析心得體會(huì)報(bào)告(精選10篇)
25下載數(shù) 345閱讀數(shù)
-
幼兒園食堂心得體會(huì)及感悟(大全18篇)
50下載數(shù) 985閱讀數(shù)
-
職工籃球比賽宣傳簡(jiǎn)報(bào)范文 教職工籃球賽簡(jiǎn)報(bào)范文(七篇)
29下載數(shù) 253閱讀數(shù)
-
榜樣作文好結(jié)尾(模板11篇)
46下載數(shù) 928閱讀數(shù)