作為一名教職工,總歸要編寫教案,教案是教學(xué)藍圖,可以有效提高教學(xué)效率。教案書寫有哪些要求呢?我們怎樣才能寫好一篇教案呢?下面是小編整理的優(yōu)秀教案范文,歡迎閱讀分享,希望對大家有所幫助。
高一數(shù)學(xué)教案集合間的基本關(guān)系教學(xué)設(shè)計文案與反思篇一
教學(xué)目標
知識目標:使學(xué)生掌握等比數(shù)列的定義及通項公式,發(fā)現(xiàn)等比數(shù)列的一些簡單性質(zhì),并能運用定義及通項公式解決一些實際問題。
能力目標:培養(yǎng)運用歸納類比的方法發(fā)現(xiàn)問題并解決問題的能力及運用方程的思想的計算能力。
德育目標:培養(yǎng)積極動腦的學(xué)習作風,在數(shù)學(xué)觀念上增強應(yīng)用意識,在個性品質(zhì)上培養(yǎng)學(xué)習興趣。
教學(xué)重難點
本節(jié)的重點是等比數(shù)列的定義、通項公式及其簡單應(yīng)用,其解決辦法是歸納、類比。
本節(jié)難點是對等比數(shù)列定義及通項公式的深刻理解,突破難點的關(guān)鍵在于緊扣定義,另外,靈活應(yīng)用定義、公式、性質(zhì)解決一些相關(guān)問題也是一個難點。
教學(xué)過程
二、教法與學(xué)法分析
為了突出重點、突破難點,本節(jié)課主要采用觀察、分析、類比、歸納的方法,讓學(xué)生參與學(xué)習,將學(xué)生置于主體位置,發(fā)揮學(xué)生的主觀能動性,將知識的形成過程轉(zhuǎn)化為學(xué)生親自探索類比歸納的過程,使學(xué)生獲得發(fā)現(xiàn)的成就感。在這個過程中,力求把握好以下幾點:-
①通過實例,讓學(xué)生發(fā)現(xiàn)規(guī)律。讓學(xué)生在問題情景中,經(jīng)歷知識的形成和發(fā)展,力求使學(xué)生學(xué)會用類比的思想去看待問題。②營造-的教學(xué)氛圍,把握好師生的情感交流,使學(xué)生參與教學(xué)全過程,讓學(xué)生唱主角,老師任導(dǎo)演。③力求反饋的全面性、及時性。通過精心設(shè)計的提問,讓學(xué)生思維動起來,針對學(xué)生回答的問題,老師進行適當?shù)恼{(diào)控。④給學(xué)生思考的時間和空間,不急于把結(jié)果拋給學(xué)生,讓學(xué)生自己去觀察、分析、類比得出結(jié)果,老師點評,逐步養(yǎng)成科學(xué)嚴謹?shù)膶W(xué)習態(tài)度,提高學(xué)生的推理能力。⑤以啟迪思維為核心,啟發(fā)有度,留有余地,導(dǎo)而弗牽,牽而弗達。這樣做增加了學(xué)生的參與機會,增強學(xué)生的參與意識,教給學(xué)生獲取知識的途徑和思考問題的方法,使學(xué)生真正成為教學(xué)的主體,使學(xué)生學(xué)會學(xué)習,提高學(xué)生學(xué)習的興趣和能力。
三、教學(xué)程序設(shè)計
(4)等差中項:如果a、a、b成等差數(shù)列,那么a叫做a與b的等差中項。
說明:通過復(fù)習等差數(shù)列的相關(guān)知識,類比學(xué)習本節(jié)課的內(nèi)容,用熟知的等差數(shù)列內(nèi)容來分散本節(jié)課的難點。
2.導(dǎo)入新課
本章引言中關(guān)于在國際象棋棋盤各格子里放麥粒的問題中,各個格子的麥粒數(shù)依次是:
1,2,4,8,…,263
再來看兩個數(shù)列:
5,25,125,625,...
···
說明:引導(dǎo)學(xué)生通過“觀察、分析、歸納”,類比等差數(shù)列的定義得出等比數(shù)列的定義,為進一步理解定義,給出下面的問題:
判定以下數(shù)列是否為等比數(shù)列,若是寫出公比q,若不是,說出理由,然后回答下面問題。
-1,-2,-4,-8…
-1,2,-4,8…
-1,-1,-1,-1…
1,0,1,0…
提出問題:(1)公比q能否為零?為什么?首項a1呢?
(2)公比q=1時是什么數(shù)列?
(3)q>0是遞增數(shù)列嗎?q<0遞減嗎?
說明:通過師生問答,充分調(diào)動學(xué)生學(xué)習的主動性及學(xué)習熱情,活躍課堂氣氛,同時培養(yǎng)學(xué)生的口頭表達能力和臨場應(yīng)變能力。另外通過趣味性的問題,來提高學(xué)生的學(xué)習興趣。激發(fā)學(xué)生發(fā)現(xiàn)等比數(shù)列的定義及其通項公式的強烈-。
3.嘗試推導(dǎo)通項公式
讓學(xué)生回顧等差數(shù)列通項公式的推導(dǎo)過程,引導(dǎo)推出等比數(shù)列的通項公式。
推導(dǎo)方法:疊乘法。
說明:學(xué)生從方法一中學(xué)會從特殊到一般的方法,并從次數(shù)中去發(fā)現(xiàn)規(guī)律,以培養(yǎng)學(xué)生的觀察能力;另外回憶等差數(shù)列的特點,并類比到等比數(shù)列中來,培養(yǎng)學(xué)生的類比能力及將新知識轉(zhuǎn)化到舊知識的能力。方法二是讓學(xué)生掌握“疊乘”的思路。
4.探索等比數(shù)列的圖像
等差數(shù)列的圖像可以看成是直線上一群孤立的點構(gòu)成的,觀察等比數(shù)列的通項公式,你能得出什么結(jié)果?它的圖像如何?
變式2.等比數(shù)列{an}中,a2=2,a9=32,求q.
(學(xué)生自己動手解答。)
說明:例1的目的是讓學(xué)生熟悉公式并應(yīng)用于實際,例2及變式是讓學(xué)生明白,公式中a1,q,n,an四個量中,知道任意三個即可求另一個。并從這些題中掌握等比數(shù)列運算中常規(guī)的消元方法。
6.探索等比數(shù)列的性質(zhì)
類比等差數(shù)列的性質(zhì),猜測等比數(shù)列的性質(zhì),然后引導(dǎo)推證。
7.性質(zhì)應(yīng)用
例3.在等比數(shù)列{an}中,a5=2,a10=10,求a15
(讓學(xué)生自己動手,尋求多種解題方法。)
方法一:由題意列方程組解得
方法二:利用性質(zhì)2
方法三:利用性質(zhì)3
例4(見教材例3)已知數(shù)列{an}、{bn}是項數(shù)相同的等比數(shù)列,求證:{an·bn}是等比數(shù)列。
8.小結(jié)
為了讓學(xué)生將獲得的知識進一步條理化,系統(tǒng)化,同時培養(yǎng)學(xué)生的歸納總結(jié)能力及練習后進行再認識的能力,教師引導(dǎo)學(xué)生對本節(jié)課進行總結(jié)。
1、等比數(shù)列的定義,怎樣判斷一個數(shù)列是否是等比數(shù)列
2、等比數(shù)列的通項公式,每個字母代表的含義。
3、等比數(shù)列應(yīng)注意那些問題(a1≠0,q≠0)
4、等比數(shù)列的圖像
5、通項公式的應(yīng)用(知三求一)
6、等比數(shù)列的性質(zhì)
7、等比數(shù)列的概念(注意兩點①同號兩數(shù)才有等比中項
②等比中項有兩個,他們互為相反數(shù))
8、本節(jié)課采用的主要思想
——類比思想
9.布置作業(yè)
習題3.41②、④3.8.9.
10.板書設(shè)計
<
高一數(shù)學(xué)教案集合間的基本關(guān)系教學(xué)設(shè)計文案與反思篇二
教學(xué)準備
教學(xué)目標
1、應(yīng)用正弦余弦定理解斜三角形應(yīng)用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗;
2、實際問題中的有關(guān)術(shù)語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時針轉(zhuǎn)到目標方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實際問題的常見題型有:
測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
教學(xué)重難點
1、應(yīng)用正弦余弦定理解斜三角形應(yīng)用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗;
2、實際問題中的有關(guān)術(shù)語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時針轉(zhuǎn)到目標方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實際問題的常見題型有:
測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
教學(xué)過程
一、知識歸納
1、應(yīng)用正弦余弦定理解斜三角形應(yīng)用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗;
2、實際問題中的有關(guān)術(shù)語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時針轉(zhuǎn)到目標方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實際問題的常見題型有:
測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
二、例題討論
一)利用方向角構(gòu)造三角形
四)測量角度問題
例4、在一個特定時段內(nèi),以點e為中心的7海里以內(nèi)海域被設(shè)為警戒水域.點e正北55海里處有一個雷達觀測站a.某時刻測得一艘勻速直線行駛的船只位于點a北偏東。
高一數(shù)學(xué)教案集合間的基本關(guān)系教學(xué)設(shè)計2021文案3
教學(xué)準備
教學(xué)目標
掌握等差數(shù)列與等比數(shù)列的概念,通項公式與前n項和公式,等差中項與等比中項的概念,并能運用這些知識解決一些基本問題.
教學(xué)重難點
掌握等差數(shù)列與等比數(shù)列的概念,通項公式與前n項和公式,等差中項與等比中項的概念,并能運用這些知識解決一些基本問題.
教學(xué)過程
等比數(shù)列性質(zhì)請同學(xué)們類比得出.
【方法規(guī)律】
1、通項公式與前n項和公式聯(lián)系著五個基本量,“知三求二”是一類最基本的運算題.方程觀點是解決這類問題的基本數(shù)學(xué)思想和方法.
2、判斷一個數(shù)列是等差數(shù)列或等比數(shù)列,常用的方法使用定義.特別地,在判斷三個實數(shù)
a,b,c成等差(比)數(shù)列時,常用(注:若為等比數(shù)列,則a,b,c均不為0)
3、在求等差數(shù)列前n項和的(小)值時,常用函數(shù)的思想和方法加以解決.
【示范舉例】
例1:(1)設(shè)等差數(shù)列的前n項和為30,前2n項和為100,則前3n項和為.
(2)一個等比數(shù)列的前三項之和為26,前六項之和為728,則a1=,q=.
例2:四數(shù)中前三個數(shù)成等比數(shù)列,后三個數(shù)成等差數(shù)列,首末兩項之和為21,中間兩項之和為18,求此四個數(shù).
例3:項數(shù)為奇數(shù)的等差數(shù)列,奇數(shù)項之和為44,偶數(shù)項之和為33,求該數(shù)列的中間項.
【篇二】
教學(xué)準備
教學(xué)目標
知識目標等差數(shù)列定義等差數(shù)列通項公式
能力目標掌握等差數(shù)列定義等差數(shù)列通項公式
情感目標培養(yǎng)學(xué)生的觀察、推理、歸納能力
教學(xué)重難點
教學(xué)重點等差數(shù)列的概念的理解與掌握
等差數(shù)列通項公式推導(dǎo)及應(yīng)用教學(xué)難點等差數(shù)列“等差”的理解、把握和應(yīng)用
教學(xué)過程
由-《紅高粱》主題曲“酒神曲”引入等差數(shù)列定義
問題:多媒體演示,觀察----發(fā)現(xiàn)?
一、等差數(shù)列定義:
一般地,如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列。這個常數(shù)叫做等差數(shù)列的公差,通常用字母d表示。
例1:觀察下面數(shù)列是否是等差數(shù)列:….
二、等差數(shù)列通項公式:
已知等差數(shù)列{an}的首項是a1,公差是d。
則由定義可得:
a2-a1=d
a3-a2=d
a4-a3=d
……
an-an-1=d
即可得:
an=a1+(n-1)d
例2已知等差數(shù)列的首項a1是3,公差d是2,求它的通項公式。
分析:知道a1,d,求an。代入通項公式
解:∵a1=3,d=2
∴an=a1+(n-1)d
=3+(n-1)×2
=2n+1
例3求等差數(shù)列10,8,6,4…的第20項。
分析:根據(jù)a1=10,d=-2,先求出通項公式an,再求出a20
解:∵a1=10,d=8-10=-2,n=20
由an=a1+(n-1)d得
∴a20=a1+(n-1)d
=10+(20-1)×(-2)
=-28
例4:在等差數(shù)列{an}中,已知a6=12,a18=36,求通項an。
分析:此題已知a6=12,n=6;a18=36,n=18分別代入通項公式an=a1+(n-1)d中,可得兩個方程,都含a1與d兩個未知數(shù)組成方程組,可解出a1與d。
解:由題意可得
a1+5d=12
a1+17d=36
∴d=2a1=2
∴an=2+(n-1)×2=2n
練習
1.判斷下列數(shù)列是否為等差數(shù)列:
①23,25,26,27,28,29,30;
②0,0,0,0,0,0,…
③52,50,48,46,44,42,40,35;
④-1,-8,-15,-22,-29;
答案:①不是②是①不是②是
等差數(shù)列{an}的前三項依次為a-6,-3a-5,-10a-1,則a等于()
a.1b.-1c.-1/3d.5/11
提示:(-3a-5)-(a-6)=(-10a-1)-(-3a-5)
3.在數(shù)列{an}中a1=1,an=an+1+4,則a10=.
提示:d=an+1-an=-4
教師繼續(xù)提出問題
已知數(shù)列{an}前n項和為……
作業(yè)
p116習題3.21,2
高一數(shù)學(xué)教案集合間的基本關(guān)系教學(xué)設(shè)計文案與反思篇三
教學(xué)準備
教學(xué)目標
1、數(shù)學(xué)知識:掌握等比數(shù)列的概念,通項公式,及其有關(guān)性質(zhì);
2、數(shù)學(xué)能力:通過等差數(shù)列和等比數(shù)列的類比學(xué)習,培養(yǎng)學(xué)生類比歸納的能力;
歸納——猜想——證明的數(shù)學(xué)研究方法;
3、數(shù)學(xué)思想:培養(yǎng)學(xué)生分類討論,函數(shù)的數(shù)學(xué)思想。
教學(xué)重難點
重點:等比數(shù)列的概念及其通項公式,如何通過類比利用等差數(shù)列學(xué)習等比數(shù)列;
難點:等比數(shù)列的性質(zhì)的探索過程。
教學(xué)過程
教學(xué)過程:
1、問題引入:
前面我們已經(jīng)研究了一類特殊的數(shù)列——等差數(shù)列。
問題1:滿足什么條件的數(shù)列是等差數(shù)列?如何確定一個等差數(shù)列?
(學(xué)生口述,并投影):如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列。
要想確定一個等差數(shù)列,只要知道它的首項a1和公差d。
已知等差數(shù)列的首項a1和d,那么等差數(shù)列的通項公式為:(板書)an=a1+(n-1)d。
師:事實上,等差數(shù)列的關(guān)鍵是一個“差”字,即如果一個數(shù)列,從第2項起,每一項與它前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列。
(第一次類比)類似的,我們提出這樣一個問題。
問題2:如果一個數(shù)列,從第2項起,每一項與它的前一項的……等于同一個常數(shù),那么這個數(shù)列叫做……數(shù)列。
(這里以填空的形式引導(dǎo)學(xué)生發(fā)揮自己的想法,對于“和”與“積”的情況,可以利用具體的例子予以說明:如果一個數(shù)列,從第2項起,每一項與它的前一項的“和”(或“積”)等于同一個常數(shù)的話,這個數(shù)列是一個各項重復(fù)出現(xiàn)的“周期數(shù)列”,而與等差數(shù)列最相似的是“比”為同一個常數(shù)的情況。而這個數(shù)列就是我們今天要研究的等比數(shù)列了。)
2、新課:
1)等比數(shù)列的定義:如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù),那么這個數(shù)列就叫做等比數(shù)列。這個常數(shù)叫做公比。
師:這就牽涉到等比數(shù)列的通項公式問題,回憶一下等差數(shù)列的通項公式是怎樣得到的?類似于等差數(shù)列,要想確定一個等比數(shù)列的通項公式,要知道什么?
師生共同簡要回顧等差數(shù)列的通項公式推導(dǎo)的方法:累加法和迭代法。
公式的推導(dǎo):(師生共同完成)
若設(shè)等比數(shù)列的公比為q和首項為a1,則有:
方法一:(累乘法)
3)等比數(shù)列的性質(zhì):
下面我們一起來研究一下等比數(shù)列的性質(zhì)
通過上面的研究,我們發(fā)現(xiàn)等比數(shù)列和等差數(shù)列之間似乎有著相似的地方,這為我們研究等比數(shù)列的性質(zhì)提供了一條思路:我們可以利用等差數(shù)列的性質(zhì),通過類比得到等比數(shù)列的性質(zhì)。
問題4:如果{an}是一個等差數(shù)列,它有哪些性質(zhì)?
(根據(jù)學(xué)生實際情況,可引導(dǎo)學(xué)生通過具體例子,尋找規(guī)律,如:
3、例題鞏固:
例1、一個等比數(shù)列的第二項是2,第三項與第四項的和是12,求它的第八項的值。-
答案:1458或128。
例2、正項等比數(shù)列{an}中,a6·a15+a9·a12=30,則log15a1a2a3…a20=_10____.
例3、已知一個等差數(shù)列:2,4,6,8,10,12,14,16,……,2n,……,能否在這個數(shù)列中取出一些項組成一個新的數(shù)列{cn},使得{cn}是一個公比為2的等比數(shù)列,若能請指出{cn}中的第k項是等差數(shù)列中的第幾項?
(本題為開放題,沒有的答案,如對于{cn}:2,4,8,16,……,2n,……,則ck=2k=2×2k-1,所以{cn}中的第k項是等差數(shù)列中的第2k-1項。關(guān)鍵是對通項公式的理解)
1、小結(jié):
今天我們主要學(xué)習了有關(guān)等比數(shù)列的概念、通項公式、以及它的性質(zhì),通過今天的學(xué)習
我們不僅學(xué)到了關(guān)于等比數(shù)列的有關(guān)知識,更重要的是我們學(xué)會了由類比——猜想——證明的科學(xué)思維的過程。
2、作業(yè):
p129:1,2,3
思考題:在等差數(shù)列:2,4,6,8,10,12,14,16,……,2n,……,中取出一些項:6,12,24,48,……,組成一個新的數(shù)列{cn},{cn}是一個公比為2的等比數(shù)列,請指出{cn}中的第k項是等差數(shù)列中的第幾項?
教學(xué)設(shè)計說明:
1、教學(xué)目標和重難點:首先作為等比數(shù)列的第一節(jié)課,對于等比數(shù)列的概念、通項公式及其性質(zhì)是學(xué)生接下來學(xué)習等比數(shù)列的基礎(chǔ),是必須要落實的;其次,數(shù)學(xué)教學(xué)除了要傳授知識,更重要的是傳授科學(xué)的研究方法,等比數(shù)列是在等差數(shù)列之后學(xué)習的因此對等比數(shù)列的學(xué)習必然要和等差數(shù)列結(jié)合起來,通過等比數(shù)列和等差數(shù)列的類比學(xué)習,對培養(yǎng)學(xué)生類比——猜想——證明的科學(xué)研究方法是有利的。這也就成了本節(jié)課的重點。
2、教學(xué)設(shè)計過程:本節(jié)課主要從以下幾個方面展開:
1)通過復(fù)習等差數(shù)列的定義,類比得出等比數(shù)列的定義;
2)等比數(shù)列的通項公式的推導(dǎo);
3)等比數(shù)列的性質(zhì);
有意識的引導(dǎo)學(xué)生復(fù)習等差數(shù)列的定義及其通項公式的探求思路,一方面使學(xué)生回顧舊
知識,另一方面使學(xué)生通過聯(lián)想,為類比地探索等比數(shù)列的定義、通項公式奠定基礎(chǔ)。
在類比得到等比數(shù)列的定義之后,再對幾個具體的數(shù)列進行鑒別,旨在遵循“特殊——一般——特殊”的認識規(guī)律,使學(xué)生體會觀察、類比、歸納等合情推理方法的應(yīng)用。培養(yǎng)學(xué)生應(yīng)用知識的能力。
在得到等比數(shù)列的定義之后,探索等比數(shù)列的通項公式又是一個重點。這里通過問題3的設(shè)計,使學(xué)生產(chǎn)生不得不考慮通項公式的心理傾向,造成學(xué)生認知上的沖突,從而使學(xué)生主動完成對知識的接受。
通過等差數(shù)列和等比數(shù)列的通項公式的比較使學(xué)生初步體會到等差和等比的相似性,為下面類比學(xué)習等比數(shù)列的性質(zhì),做好鋪墊。
等比性質(zhì)的研究是本節(jié)課的-,通過類比
關(guān)于例題設(shè)計:重知識的應(yīng)用,具有開放性,為使學(xué)生更好的掌握本節(jié)課的內(nèi)容。
高一數(shù)學(xué)教案集合間的基本關(guān)系教學(xué)設(shè)計文案與反思篇四
教學(xué)準備
教學(xué)目標
解三角形及應(yīng)用舉例
教學(xué)重難點
解三角形及應(yīng)用舉例
教學(xué)過程
一.基礎(chǔ)知識精講
掌握三角形有關(guān)的定理
利用正弦定理,可以解決以下兩類問題:
(1)已知兩角和任一邊,求其他兩邊和一角;
(2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進一步求出其他的邊和角);
利用余弦定理,可以解決以下兩類問題:
(1)已知三邊,求三角;(2)已知兩邊和它們的夾角,求第三邊和其他兩角。
掌握正弦定理、余弦定理及其變形形式,利用三角公式解一些有關(guān)三角形中的三角函數(shù)問題.
二.問題討論
思維點撥:已知兩邊和其中一邊的對角解三角形問題,用正弦定理解,但需注意解的情況的討論.
思維點撥::三角形中的三角變換,應(yīng)靈活運用正、余弦定理.在求值時,要利用三角函數(shù)的有關(guān)性質(zhì).
例6:在某海濱城市附近海面有一臺風,據(jù)檢測,當前臺
風中心位于城市o(如圖)的東偏南方向
300km的海面p處,并以20km/h的速度向西偏北的
方向移動,臺風侵襲的范圍為圓形區(qū)域,當前半徑為60km,
并以10km/h的速度不斷增加,問幾小時后該城市開始受到
臺風的侵襲。
一.小結(jié):
1.利用正弦定理,可以解決以下兩類問題:
(1)已知兩角和任一邊,求其他兩邊和一角;
(2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進一步求出其他的邊和角);2。利用余弦定理,可以解決以下兩類問題:
(1)已知三邊,求三角;(2)已知兩邊和它們的夾角,求第三邊和其他兩角。
3.邊角互化是解三角形問題常用的手段.
三.作業(yè):p80闖關(guān)訓(xùn)練
您可能關(guān)注的文檔
- 最新高一集合的基本運算教案(實用5篇)
- 最新華東師范版八年級上冊數(shù)學(xué)教案(匯總20篇)
- 八年級下冊數(shù)學(xué)函數(shù)的表示方法(匯總17篇)
- 2023年小班秋游方案及總結(jié)(精選12篇)
- 2023年傅雷家書讀書筆記摘抄好詞好句好段及感悟(實用13篇)
- 2023年傅雷家書讀書筆記摘抄好詞好句好段及讀后感書評(精選10篇)
- 2023年人教版小學(xué)語文三年級上冊教案設(shè)計(大全19篇)
- 2023年湘教版八年級地理的教學(xué)設(shè)計(精選10篇)
- 最新酒店促銷方案書面(實用16篇)
- 2023年語文跟崗實踐培訓(xùn)心得優(yōu)秀(大全13篇)
- 探索平面設(shè)計師工作總結(jié)的重要性(匯總14篇)
- 平面設(shè)計師工作總結(jié)體會與收獲大全(20篇)
- 平面設(shè)計師工作總結(jié)的實用指南(熱門18篇)
- 免費個人簡歷電子版模板(優(yōu)秀12篇)
- 個人簡歷電子版免費模板推薦(通用20篇)
- 免費個人簡歷電子版制作教程(模板17篇)
- 學(xué)校貧困補助申請書(通用23篇)
- 學(xué)校貧困補助申請書的重要性范文(19篇)
- 學(xué)校貧困補助申請書的核心要點(專業(yè)16篇)
- 學(xué)校貧困補助申請書的申請流程(熱門18篇)
- 法制教育講座心得體會大全(17篇)
- 教育工作者的超市工作總結(jié)與計劃(模板18篇)
- 教學(xué)秘書的工作總結(jié)案例(專業(yè)13篇)
- 教師的超市工作總結(jié)與計劃(精選18篇)
- 單位趣味運動會總結(jié)(模板21篇)
- 禮品店創(chuàng)業(yè)計劃書的重要性(實用16篇)
- 消防隊月度工作總結(jié)報告(熱門18篇)
- 工藝技術(shù)員工作總結(jié)(專業(yè)18篇)
- 大學(xué)學(xué)生會秘書處工作總結(jié)(模板22篇)
- 醫(yī)院科秘書工作總結(jié)(專業(yè)14篇)