手機閱讀

高數(shù)輔導(dǎo)小課堂心得體會實用 數(shù)學(xué)培優(yōu)課心得體會(二篇)

格式:DOC 上傳日期:2023-01-04 17:32:45 頁碼:13
高數(shù)輔導(dǎo)小課堂心得體會實用 數(shù)學(xué)培優(yōu)課心得體會(二篇)
2023-01-04 17:32:45    小編:ZTFB

心得體會是指一種讀書、實踐后所寫的感受性文字。心得體會對于我們是非常有幫助的,可是應(yīng)該怎么寫心得體會呢?以下我給大家整理了一些優(yōu)質(zhì)的心得體會范文,希望對大家能夠有所幫助。

對于高數(shù)輔導(dǎo)小課堂心得體會實用一

本節(jié)課是北師大版高中數(shù)學(xué)必修5中第三章第4節(jié)的內(nèi)容。主要是二元均值不等式。它是在系統(tǒng)地學(xué)習(xí)了不等關(guān)系和不等式性質(zhì),掌握了不等式性質(zhì)的基礎(chǔ)上展開的,作為重要的基本不等式之一,為后續(xù)的學(xué)習(xí)奠定基礎(chǔ)。要進一步了解不等式的性質(zhì)及運用,研究最值問題,此時基本不等式是必不可缺的?;静坏仁皆谥R體系中起了承上啟下的作用,同時在生活及生產(chǎn)實際中有著廣泛的應(yīng)用,因此它也是對學(xué)生進行情感價值觀教育的優(yōu)良素材,所以基本不等式應(yīng)重點研究。

教學(xué)中注意用新課程理念處理教材,學(xué)生的數(shù)學(xué)學(xué)習(xí)活動不僅要接受、記憶、模仿和練習(xí),而且要自主探究、動手實踐、合作交流、閱讀自學(xué),師生互動,教師發(fā)揮組織者、引導(dǎo)者、合作者的作用,引導(dǎo)學(xué)生主體參與、揭示本質(zhì)、經(jīng)歷過程。

就知識的應(yīng)用價值上來看,基本不等式是從大量數(shù)學(xué)問題和現(xiàn)實問題中抽象出來的一個模型,在公式推導(dǎo)中所蘊涵的`數(shù)學(xué)思想方法如數(shù)形結(jié)合、抽象歸納、演繹推理、分析法證明等在各種不等式的研究中均有著廣泛的應(yīng)用;另外,在解決函數(shù)最值問題中,基本不等式也起著重要的作用。

就內(nèi)容的人文價值上來看,基本不等式的探究與推導(dǎo)需要學(xué)生觀察、分析、歸納,有助于培養(yǎng)學(xué)生創(chuàng)新思維和探索精神,是培養(yǎng)學(xué)生數(shù)形結(jié)合意識和提高數(shù)學(xué)能力的良好載體。

二、教學(xué)目標(biāo)和目標(biāo)解析

教學(xué)目標(biāo):了解基本不等式的幾何背景,能在教師的引導(dǎo)下探究基本不等式的證明過程,理解基本不等式的幾何解釋,并能解決簡單的最值問題;借助于信息技術(shù)強化數(shù)形結(jié)合的思想方法。

在教師的逐步引導(dǎo)下,能從較為熟悉的幾何圖形中抽象出基本不等式,實現(xiàn)對基本不等式幾何背景的初步了解。

學(xué)生已經(jīng)學(xué)習(xí)了不等式的基本性質(zhì),可以運用作差法給出基本不等式的證明,同時,介紹并滲透分析法證明的思想方法,從而完成基本不等式的代數(shù)證明。

進一步通過探究幾何圖形,給出基本不等式的幾何解釋,加強學(xué)生數(shù)形結(jié)合的意識。

通過應(yīng)用問題的解決,明確解決應(yīng)用題的一般過程。這是一個過程性目標(biāo)。借助例1,引導(dǎo)學(xué)生嘗試用基本不等式解決簡單的最值問題,體會和與積的相互轉(zhuǎn)化,進一步通過例2,引導(dǎo)學(xué)生領(lǐng)會運用基本不等式的三個限制條件(一正二定三相等)在解決最值問題中的作用,并用幾何畫板展示函數(shù)圖形,進一步深化數(shù)形結(jié)合的思想。結(jié)合變式訓(xùn)練完善對基本不等式結(jié)構(gòu)的理解,提升解決問題的能力,體會方法與策略。

三、教學(xué)問題診斷

在認知上,學(xué)生已經(jīng)掌握了不等式的基本性質(zhì),并能夠根據(jù)不等式的性質(zhì)進行數(shù)、式的大小比較,也具備了一定的平面幾何的基本知識。但是,倘若教師不加以引導(dǎo),學(xué)生并不能自覺地通過已有的知識、記憶去發(fā)展和構(gòu)建幾何圖形中的相等或不等關(guān)系,這就需要教師逐步地引導(dǎo),并選用合理的手段去激活學(xué)生的思維,增強數(shù)形結(jié)合的思想意識。

另外,盡可能引領(lǐng)學(xué)生充分理解兩個基本不等式等號成立的條件,為利用基本不等式解決簡單的最值問題做好鋪墊。在用基本不等式解決最值時,學(xué)生往往容易忽視基本不等式,使用的前提條件a,b0同時又要注意區(qū)別基本不等式的使用條件為,因此,在教學(xué)過程中,借助例題落實學(xué)生領(lǐng)會基本不等式成立的三個限制條件(一正二定三相等)在解決最值問題中的作用。而對于“一正二定三相等”的進一步強化和應(yīng)用,將放于下一個課時的內(nèi)容。

四、教學(xué)支持條件分析

為了能很好地展示幾何圖形,體會基本不等式的幾何背景,教學(xué)中需要有具體的圖形來幫助學(xué)生理解基本不等式的生成,感受數(shù)形結(jié)合的數(shù)學(xué)思想,所以,借助于幾何畫板軟件來加強幾何直觀十分必要,同時演示動畫幫助學(xué)生驗證基本不等式等號取到的情況,并用電腦3d技術(shù)展示基本不等式的又一幾何背景,加深對基本不等式的理解,增強教學(xué)效果。

五、教學(xué)設(shè)計流程圖

教學(xué)過程的設(shè)計從實際的問題情境出發(fā),以基本不等式的幾何背景為著手點,以探究活動為主線,探求基本不等式的結(jié)構(gòu)形式,并進一步給出幾何解釋,深化對基本不等式的理解。通過典型例題的講解,明確利用基本不等式解決簡單最值問題的應(yīng)用價值。數(shù)形結(jié)合的思想貫穿于整個教學(xué)過程,并時刻體現(xiàn)在教學(xué)活動之中。

六、教法和預(yù)期效果分析

本節(jié)課通過6個教學(xué)環(huán)節(jié),強調(diào)過程教學(xué),在教師的引導(dǎo)下,啟動觀察、分析、感知、歸納、探究等思維活動,從各個層面認識基本不等式,并理解其幾何背景。課堂教學(xué)以學(xué)生為主體,基本不等式為主線,在學(xué)生原有的認知基本上,充分展示基本不等式這一知識的發(fā)生、發(fā)展及再創(chuàng)造的過程。

同時,以多媒體課件作為教學(xué)輔助手段,賦予學(xué)生直觀感受,便于觀察,從而把一個生疏的、內(nèi)在的知識,變成一個可認知的、可交流的對象,提高了課堂效率。

通過這節(jié)課的學(xué)習(xí),引領(lǐng)學(xué)生多角度、多方位地認識基本不等式,并了解它的幾何意義充分滲透數(shù)形結(jié)合的思想;能在教師的引導(dǎo)下,主動探索并了解基本不等式的證明過程,強化證明的各類方法;

會用基本不等式解決簡單的最大(小)值問題并注意等號取到的條件。在教學(xué)過程中始終圍繞教學(xué)目標(biāo)進行評價,師生互動,在教學(xué)過程的不同環(huán)節(jié)中及時獲取教學(xué)反饋信息,以學(xué)生為主體,及時調(diào)節(jié)教學(xué)措施,完成教學(xué)目標(biāo),從而達到較為理想的教學(xué)效果。

對于高數(shù)輔導(dǎo)小課堂心得體會實用二

一、教學(xué)內(nèi)容

高中必修1及必修2的部分教學(xué)內(nèi)容。通過教學(xué),要使學(xué)生把數(shù)學(xué)與實際生活聯(lián)系起來,掌握必須掌握的基礎(chǔ)知識與基本技能,進一步培養(yǎng)學(xué)生的數(shù)學(xué)創(chuàng)新意識,良好個性品質(zhì)以及初步的辯證唯物主義的觀點。指導(dǎo)思想

二、學(xué)情及教材分析

高中教學(xué)內(nèi)容深,學(xué)生接受起來很困難。所以教師要根據(jù)實際情況,面對全體,因材施教,對學(xué)習(xí)有障礙的學(xué)生進行個別輔導(dǎo)。以優(yōu)待差,發(fā)揮學(xué)生群體的作用。抓好三類生的教學(xué),促進尖子生,帶好中等生,扶好下等生。順利完成初高中的銜接教學(xué)。

三、方法措施

1、本學(xué)期我繼續(xù)采取的教學(xué)模式是:四點------學(xué)知識點、抓重點、找疑點、攻難點。

學(xué)知識點-----學(xué)會本節(jié)課應(yīng)該學(xué)會的知識點、本單元的知識點、本冊的知識點。熟知應(yīng)掌握的概念、法則、定理、公式等。

抓重點--------抓住本節(jié)課本單元本冊的的重點。并靈活地運用其中的公式定理法則等學(xué)以致用,會做相應(yīng)的習(xí)題,特別是重點習(xí)題。

找疑點--------每節(jié)課都讓學(xué)生找出自己的疑問、疑點,教師采取相應(yīng)的措施幫助學(xué)生解疑化難。

攻難點-------對于本節(jié)課,本單元的難點及重點,教師要集中精力對學(xué)生加強訓(xùn)練,引導(dǎo)學(xué)生反復(fù)練習(xí),形成數(shù)學(xué)能力,化解難點。

2、總結(jié)學(xué)習(xí)方法。針對學(xué)生接受知識困難、又非常容易遺忘的特點,在教學(xué)中最關(guān)鍵的是要總結(jié)好學(xué)習(xí)方法。只有總結(jié)好了方法才會學(xué)有所獲。

3、在教學(xué)中面向全體學(xué)生,因材施教,加強引導(dǎo),使學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣,注重培養(yǎng)學(xué)生興趣和主動性。鼓勵學(xué)生大膽創(chuàng)新,勇于探索。培養(yǎng)學(xué)生創(chuàng)新能力和創(chuàng)新意識。努力提高學(xué)生成績。

4、照顧全體學(xué)生,提高尖子生;帶好中等生;抓住后進生。以優(yōu)帶差,共同提高。不傷害學(xué)生的自尊心。讓學(xué)生快樂地學(xué)習(xí)。

5、教師千方百計想出最直觀的教學(xué)方法,把課程講明白,直到學(xué)生弄明白為止。多使用直觀簡捷的教學(xué)方法,注重興趣教學(xué)。

6、根據(jù)學(xué)生容易遺忘的特點,要及時有效地搞好復(fù)習(xí)。課前提問抓住重點,每周的自習(xí)課搞好一周的復(fù)習(xí)鞏固,做好每個單元的訓(xùn)練。

7、教師一定要有耐心、信心,相信學(xué)生會學(xué)好的。

本學(xué)期擔(dān)任高一(9)(10)兩班的數(shù)學(xué)教學(xué)工作,兩班學(xué)生共有120人,初中的基礎(chǔ)參差不齊,但兩個班的學(xué)生整體水平不高;部分學(xué)生學(xué)習(xí)習(xí)慣不好,很多學(xué)生不能正確評價自己,這給教學(xué)工作帶來了一定的難度,為把本學(xué)期教學(xué)工作做好,制定如下教學(xué)工作計劃。

一、指導(dǎo)思想:

使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個人發(fā)展與社會進步的需要。具體目標(biāo)如下。

1.獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會其中所蘊涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動,體驗數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。

2.提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。

3.提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學(xué)表達和交流的能力,發(fā)展獨立獲取數(shù)學(xué)知識的能力。

4.發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學(xué)模式進行思考和作出判斷。

5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。

6.具有一定的數(shù)學(xué)視野,逐步認識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。

一、教學(xué)目標(biāo).

(一)情意目標(biāo)

(1)通過分析問題的方法的教學(xué),培養(yǎng)學(xué)生的學(xué)習(xí)的興趣。

(2)提供生活背景,通過數(shù)學(xué)建模,讓學(xué)生體會數(shù)學(xué)就在身邊,培養(yǎng)學(xué)數(shù)學(xué)用數(shù)學(xué)的意識。(3)在探究函數(shù)、等差數(shù)列、等比數(shù)列的性質(zhì),體驗獲得數(shù)學(xué)規(guī)律的艱辛和樂趣,在分組研究合作學(xué)習(xí)中學(xué)會交流、相互評價,提高學(xué)生的合作意識

(4)基于情意目標(biāo),調(diào)控教學(xué)流程,堅定學(xué)習(xí)信念和學(xué)習(xí)信心。

(5)還時空給學(xué)生、還課堂給學(xué)生、還探索和發(fā)現(xiàn)權(quán)給學(xué)生,給予學(xué)生自主探索與合作交流的機會,在發(fā)展他們思維能力的同時,發(fā)展他們的數(shù)學(xué)情感、學(xué)好數(shù)學(xué)的自信心和追求數(shù)學(xué)的科學(xué)精神。

(6)讓學(xué)生體驗“發(fā)現(xiàn)——挫折——矛盾——頓悟——新的發(fā)現(xiàn)”這一科學(xué)發(fā)現(xiàn)歷程法。

(二)能力要求 培養(yǎng)學(xué)生記憶能力。

(1)通過定義、命題的總體結(jié)構(gòu)教學(xué),揭示其本質(zhì)特點和相互關(guān)系,培養(yǎng)對數(shù)學(xué)本質(zhì)問題的背景事實及具體數(shù)據(jù)的記憶。

(3)通過揭示立體集合、函數(shù)、數(shù)列有關(guān)概念、公式和圖形的對應(yīng)關(guān)系,培養(yǎng)記憶能力。

2、培養(yǎng)學(xué)生的運算能力。

(1)通過概率的訓(xùn)練,培養(yǎng)學(xué)生的運算能力。

(2)加強對概念、公式、法則的明確性和靈活性的教學(xué),培養(yǎng)學(xué)生的運算能力。

(3)通過函數(shù)、數(shù)列的教學(xué),提高學(xué)生是運算過程具有明晰性、合理性、簡捷性能力。

(4)通過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。

(5)利用數(shù)形結(jié)合,另辟蹊徑,提高學(xué)生運算能力。

一、指導(dǎo)思想:

使學(xué)生學(xué)好從事社會主義現(xiàn)代化建設(shè)和進一步學(xué)習(xí)現(xiàn)代科學(xué)技術(shù)所必需的數(shù)學(xué)基礎(chǔ)知識和基本技能,培養(yǎng)學(xué)生的運算能力、邏輯思維能力和空間想象能力,以逐步形成運用數(shù)學(xué)知識來分析和解決實際問題的能力。要培養(yǎng)學(xué)生對數(shù)學(xué)的興趣,激勵學(xué)生為實現(xiàn)四個現(xiàn)代化學(xué)好數(shù)學(xué)的積極性,培養(yǎng)學(xué)生的科學(xué)態(tài)度和辨證唯物主義的觀點。

二、基本情況分析:

1、4班共 人,男生 人,女生 人;本班相對而言,數(shù)學(xué)尖子約 人,中上等生約 人,中等生約 人,中下生約 人,差生約 人。

5班共 人,男生 人,女生 人;本班相對而言,數(shù)學(xué)尖子約 人,中上等生約 人,中等生約 人,中下生約 人,差生約 人。

2、4班在初中升入高中的升學(xué)考試中,數(shù)學(xué)成績在100’及以上的有 人,80’—99’有 人,60’—79’有 人,40’—59’有 人,40’以下有 人,其中最高分為 ,最低分為 。

5班在初中升入高中的升學(xué)考試中,數(shù)學(xué)成績在100’及以上的有 人,80’—99’有 人,60’—79’有 人,40’—59’有 人,40’以下有 人,其中最高分為 ,最低分為 。

3、4/5班分別為高一年級9個班中編排一個普高班和一個普高班之后的體育班,整體分析的結(jié)果是:

三、教材分析:

1、教材內(nèi)容:集合、一元二次不等式、簡易邏輯、映射與函數(shù)、指數(shù)函數(shù)和對數(shù)函數(shù)、數(shù)列、等差數(shù)列、等比數(shù)列。

2、集合概念及其基本理論,是近代數(shù)學(xué)最基本的內(nèi)容之一;函數(shù)是中學(xué)數(shù)學(xué)中最重要的基本概念之一;數(shù)列有著廣泛的應(yīng)用,是進一步學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ)。

3、教材重點:幾種函數(shù)的圖像與性質(zhì)、不等式的解法、數(shù)列的概念、等差數(shù)列與等比數(shù)列的通項公式、前n項和的公式。

4、教材難點:關(guān)于集合的各個基本概念的涵義及其相互之間的區(qū)別和聯(lián)系、映射的概念以及用映射來刻畫函數(shù)概念、反函數(shù)、一些代數(shù)命題的證明、

5、教材關(guān)鍵:理解概念,熟練、牢固掌握函數(shù)的圖像與性質(zhì)。

6、采用了由淺入深、減緩坡度、分散難點,逐步展開教材內(nèi)容的做法,符合從有限到無限的認識規(guī)律,體現(xiàn)了從量變到質(zhì)變和對立統(tǒng)一的辯證規(guī)律。每階段的內(nèi)容相對獨立,方法比較單一,有助于掌握每一階段內(nèi)容。

7、各部分知識之間的聯(lián)系較強,每一階段的知識都是以前一階段為基礎(chǔ),同時為下階段的學(xué)習(xí)作準(zhǔn)備。

8、全期教材重要的內(nèi)容是:集合運算、不等式解法、函數(shù)的奇偶性與單調(diào)性、等差與等比數(shù)列的通項和前n項和。

四、教學(xué)要求:

1、理解集合、子集、交集、并集、補集的概念。了解空集和全集的意義,了解屬于、包含、相等關(guān)系的意義,能掌握有關(guān)的術(shù)語和符號,能正確地表示一些簡單的集合。

2、掌握一元二次不等式的解法和絕對值不等式的解法,并能熟練求解。

3、了解命題的概念、邏輯聯(lián)結(jié)詞的含義,掌握四種命題及其關(guān)系,掌握充分、必要、充要條件,初步掌握反證法。

4、了解映射的概念,在此基礎(chǔ)上理解函數(shù)及其有關(guān)的概念,掌握互為反函數(shù)的函數(shù)圖象間的關(guān)系。

5、理解函數(shù)的單調(diào)性和奇偶性的概念,并能判斷一些簡單函數(shù)的單調(diào)性和奇偶性,能利用函數(shù)的奇偶性與圖象的對稱性的關(guān)系描繪圖象。

6、掌握指數(shù)函數(shù)、對數(shù)函數(shù)的概念及其圖象和性質(zhì),并會解簡單的函數(shù)應(yīng)用問題。

7、使學(xué)生理解數(shù)列的有關(guān)概念,掌握等差數(shù)列與等比數(shù)列的概念、通項公式、前n項和的公式,并能夠運用這些知識解決一些問題。

五、教學(xué)措施:

1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進步。

2、注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。

3、加強培養(yǎng)學(xué)生的邏輯思維能力就解決實際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進行辨證唯物主義教育。

4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。

5、自始至終貫徹教學(xué)四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。

六、教學(xué)進度安排:

九月份: 集合(2)、子集、全集、補集(2)、交集、并集(2)、集合習(xí)題(1)

絕對值不等式(1)、一元二次不等式(2)、不等式習(xí)題(1)

邏輯聯(lián)結(jié)詞(1)、四種命題(1)、充要條件(1)、習(xí)題(1)、

第一章小結(jié)與練習(xí)(3)

十月份: 映射(1)、函數(shù)(2)、單調(diào)性奇偶性(3)、反函數(shù)(2)、習(xí)題(1)

指數(shù)(1)、指數(shù)函數(shù)(3)、對數(shù)(2)、對數(shù)函數(shù)(3)、習(xí)題(1)

函數(shù)應(yīng)用舉例(2)、第二章小結(jié)與練習(xí)(3)

十一月份:期中復(fù)習(xí)與考試(8)、數(shù)列(2)、

等差數(shù)列(2)、等差數(shù)列的前n項和(2)、習(xí)題(1)

等比數(shù)列(2)、等比數(shù)列的前n項和(2)、

十二月份:分期付款等應(yīng)用(2)、習(xí)題(1)

第三章小結(jié)與練習(xí)(3)、復(fù)習(xí)(12)

元月份: 期末復(fù)習(xí)(8)

附:高一數(shù)學(xué)教學(xué)的幾點具體措施

1、作業(yè)方面:

①課堂作業(yè)設(shè)置一本;提倡用鋼筆書寫,一律要求用鉛筆、尺規(guī)作圖,書寫規(guī)范;墨跡、錯誤用橡皮擦擦干凈,保持作業(yè)本整潔;當(dāng)天布置,當(dāng)天第二節(jié)晚自習(xí)之前交(若無晚自習(xí),則第二天早讀之前交);批閱用“?”號代表錯誤,一般點在錯誤開始處,自覺完成更正;

②每次作業(yè)按a、b、c、d四個等級評定,分別得分5、4、3、2,每本作業(yè)本完成后自行統(tǒng)計得分并上交科代表審核、教師評定等級,得分90%~98%為優(yōu)良等級,98%及以上為優(yōu)秀等級;

③《同步優(yōu)化設(shè)計》及時完成,按進度交閱,自覺訂正。

2、考試方面:

①控制考試次數(shù),一般為:月考2次,期中期末統(tǒng)考各1次,期末復(fù)習(xí)小考2次;

②制好試卷,切合實際,難易適中,目標(biāo)高考;

③組織好考試,嚴(yán)格考試紀(jì)律。

3、興趣方面:

①組織一次活動、一次競賽;

②多上一些多媒體課、優(yōu)質(zhì)課;

③每兩周安排一節(jié)課時,由課代表組織4個學(xué)生講課,每人10分鐘左右,主要講解《同步優(yōu)化設(shè)計》上的難題。

4、成績總評:

①每期總評成績150分,分為三大項,分值為:考試成績125分(2次月考各5’、期中15’、期末100’)、平時成績24分(作業(yè)10’、練習(xí)8’、2次小考各3’)、自評1分。

②提倡準(zhǔn)備筆記本、考試錯題更正本,并檢查后給予加分5’、2’,其它特別表現(xiàn)給予加分3’。

5、抓好學(xué)習(xí)常規(guī),提高學(xué)習(xí)成績。

一、指導(dǎo)思想:

(1)隨著素質(zhì)教育的深入展開,《課程方案》提出了“教育要面向世界,面向未來,面向現(xiàn)代化”和“教育必須為社會主義現(xiàn)代化建設(shè)服務(wù),必須與生產(chǎn)勞動相結(jié)合,培養(yǎng)德、智、體等方面全面發(fā)展的社會主義事業(yè)的建設(shè)者和接班人”的指導(dǎo)思想和課程理念和改革要點。使學(xué)生掌握從事社會主義現(xiàn)代化建設(shè)和進一步學(xué)習(xí)現(xiàn)代化科學(xué)技術(shù)所需要的數(shù)學(xué)知識和基本技能。

(2)培養(yǎng)學(xué)生的邏輯思維能力、運算能力、空間想象能力,以及綜合運用有關(guān)數(shù)學(xué)知識分析問題和解決問題的能力。使學(xué)生逐步地學(xué)會觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運用歸納、演繹和類比的方法進行推理,并正確地、有條理地表達推理過程的能力。

(3)根據(jù)數(shù)學(xué)的學(xué)科特點,加強學(xué)習(xí)目的性的教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的自覺心和興趣,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,實事求是的科學(xué)態(tài)度,頑強的學(xué)習(xí)毅力和獨立思考、探索創(chuàng)新的精神。

(4)使學(xué)生具有一定的數(shù)學(xué)視野,逐步認識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,理解數(shù)學(xué)中普遍存在著的運動、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。

(5)學(xué)會通過收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結(jié)論來解決實際問題的思維方法和操作方法。

(6)本學(xué)期是高一的重要時期,教師承擔(dān)著雙重責(zé)任,既要不斷夯實基礎(chǔ),加強綜合能力的培養(yǎng),又要滲透有關(guān)高考的思想方法,為三年的學(xué)習(xí)做好準(zhǔn)備。

二、學(xué)生狀況分析

本學(xué)期擔(dān)任高一(1)班和(5)班的數(shù)學(xué)教學(xué)工作,學(xué)生共有111人,其中(1)班學(xué)生是名校直通班,學(xué)生思維活躍,(5)班是火箭班,學(xué)生基本素質(zhì)不錯,一些基本知識掌握不是很好,學(xué)習(xí)積極性需要教師提高,成績以中等為主,中上不多。兩個班中,從軍訓(xùn)一周來看,學(xué)生的學(xué)習(xí)積極性還是比較高,愛問問題的同學(xué)比較多,但由于基礎(chǔ)知識不太牢固,上課效率不是很高。

二、教材簡析

使用人教版《普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)(a版)》,教材在堅持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認真處理繼承、借鑒、發(fā)展、創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性、時代性、典型性和可接受性等,具有親和力、問題性、科學(xué)性、思想性、應(yīng)用性、聯(lián)系性等特點。必修1有三章(集合與函數(shù)概念;基本初等函數(shù);函數(shù)的應(yīng)用);必修4有三章(三角函數(shù);平面向量;三角恒等變換)。

必修1,主要涉及兩章內(nèi)容:

第一章 集合

通過本章學(xué)習(xí),使學(xué)生感受到用集合表示數(shù)學(xué)內(nèi)容時的簡潔性、準(zhǔn)確性,幫助學(xué)生學(xué)會用集合語言表示數(shù)學(xué)對象,為以后的學(xué)習(xí)奠定基礎(chǔ)。

1.了解集合的含義,體會元素與集合的屬于關(guān)系,并初步掌握集合的表示方法;

2.理解集合間的包含與相等關(guān)系,能識別給定集合的子集,了解全集與空集的含義;

3.理解補集的含義,會求在給定集合中某個集合的補集;

4.理解兩個集合的并集和交集的含義,會求兩個簡單集合的并集和交集;

5.滲透數(shù)形結(jié)合、分類討論等數(shù)學(xué)思想方法;

6.在引導(dǎo)學(xué)生觀察、分析、抽象、類比得到集合與集合間的關(guān)系等數(shù)學(xué)知識的過程中,培養(yǎng)學(xué)生的思維能力。

第二章 函數(shù)的概念與基本初等函數(shù)ⅰ

教學(xué)本章時應(yīng)立足于現(xiàn)實生活從具體問題入手,以問題為背景,按照“問題情境—數(shù)學(xué)活動—意義建構(gòu)—數(shù)學(xué)理論—數(shù)學(xué)應(yīng)用—回顧反思”的順序結(jié)構(gòu),引導(dǎo)學(xué)生通過實驗、觀察、歸納、抽象、概括,數(shù)學(xué)地提出、分析和解決問題。通過本章學(xué)習(xí),使學(xué)生進一步感受函數(shù)是探索自然現(xiàn)象、社會現(xiàn)象基本規(guī)律的工具和語言,學(xué)會用函數(shù)的思想、變化的觀點分析和解決問題,達到培養(yǎng)學(xué)生的創(chuàng)新思維的目的。

1.了解函數(shù)概念產(chǎn)生的背景,學(xué)習(xí)和掌握函數(shù)的概念和性質(zhì),能借助函數(shù)的知識表述、刻畫事物的變化規(guī)律;

2.理解有理指數(shù)冪的意義,掌握有理指數(shù)冪的運算性質(zhì);掌握指數(shù)函數(shù)的概念、圖象和性質(zhì);理解對數(shù)的概念,掌握對數(shù)的運算性質(zhì),掌握對數(shù)函數(shù)的概念、圖象和性質(zhì);了解冪函數(shù)的概念和性質(zhì),知道指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)時描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型;

3.了解函數(shù)與方程之間的關(guān)系;會用二分法求簡單方程的近似解;了解函數(shù)模型及其意義;

4.培養(yǎng)學(xué)生的理性思維能力、辯證思維能力、分析問題和解決問題的能力、創(chuàng)新意識與探究能力、數(shù)學(xué)建模能力以及數(shù)學(xué)交流的能力。

必修4,主要涉及三章內(nèi)容:

第一章 三角函數(shù)

通過本章學(xué)習(xí),有助于學(xué)生認識三角函數(shù)與實際生活的緊密聯(lián)系,以及三角函數(shù)在解決實際問題中的廣泛應(yīng)用,從中感受數(shù)學(xué)的價值,學(xué)會用數(shù)學(xué)的思維方式觀察、分析現(xiàn)實世界、解決日常生活和其他學(xué)科學(xué)習(xí)中的問題,發(fā)展數(shù)學(xué)應(yīng)用意識。

1.了解任意角的概念和弧度制;

2.掌握任意角三角函數(shù)的定義,理解同角三角函數(shù)的基本關(guān)系及誘導(dǎo)公式;

3.了解三角函數(shù)的周期性;

4.掌握三角函數(shù)的圖像與性質(zhì)。

第二章 平面向量

在本章中讓學(xué)生了解平面向量豐富的實際背景,理解平面向量及其運算的意義,能用向量的語言和方法表述和解決數(shù)學(xué)和物理中的一些問題,發(fā)展運算能力和解決實際問題的能力。

1.理解平面向量的概念及其表示;

2.掌握平面向量的加法、減法和向量數(shù)乘的運算;

3.理解平面向量的正交分解及其坐標(biāo)表示,掌握平面向量的坐標(biāo)運算;

4.理解平面向量數(shù)量積的含義,會用平面向量的數(shù)量積解決有關(guān)角度和垂直的問題。

第三章 三角恒等變換

通過推導(dǎo)兩角和與差的余弦、正弦、正切公式,二倍角的正弦、余弦、正切公式以及積化和差、和差化積、半角公式的過程,讓學(xué)生在經(jīng)歷和參與數(shù)學(xué)發(fā)現(xiàn)活動的基礎(chǔ)上,體會向量與三角函數(shù)的聯(lián)系、向量與三角恒等變換公式的聯(lián)系,理解并掌握三角變換的基本方法。

1.掌握兩角和與差的余弦、正弦、正切公式;

2.掌握二倍角的正弦、余弦、正切公式 ;

3.能正確運用三角公式進行簡單的三角函數(shù)式的化簡、求值和恒等式證明。

三、教學(xué)任務(wù)

本期授課內(nèi)容為必修1和必修4,必修1在期中考試前完成(約在11月5日前完成);必修4在期末考試前完成(約在12月31日前完成)。

四、教學(xué)質(zhì)量目標(biāo)

1.獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),體會數(shù)學(xué)思想和方法。

2.提高空間想象、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。

3.提高學(xué)生提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學(xué)表達和交流的能力,發(fā)展獨立獲取數(shù)學(xué)知識的能力。

4.發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學(xué)模式進行思考和作出判斷。

5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。

6.具有一定的數(shù)學(xué)視野,逐步認識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,體會數(shù)學(xué)的美學(xué)意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。

五、促進目標(biāo)達成的重點工作及措施

重點工作:

認真貫徹高中數(shù)學(xué)新課標(biāo)精神,樹立新的教學(xué)理念,以“雙基”教學(xué)為主要內(nèi)容,堅持“抓兩頭、帶中間、整體推進”,使每個學(xué)生的數(shù)學(xué)能力都得到提高和發(fā)展。

分層推進措施

1、重視學(xué)生非智力因素培養(yǎng),要經(jīng)常性地鼓勵學(xué)生,增強學(xué)生學(xué)習(xí)數(shù)學(xué)興趣,樹立勇于克服困難與戰(zhàn)勝困難的信心。

2、合理引入課題,由數(shù)學(xué)活動、故事、提問、師生交流等方式激發(fā)學(xué)生學(xué)習(xí)興趣,注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。

3、培養(yǎng)能力是數(shù)學(xué)教學(xué)的落腳點。能力是在獲得和運用知識的過程中逐步培養(yǎng)起來的。

在銜接教學(xué)中,首先要加強基本概念和基本規(guī)律的教學(xué)。

加強培養(yǎng)學(xué)生的邏輯思維能力和解決實際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進行辨證唯物主義教育。

4、講清講透數(shù)學(xué)概念和規(guī)律,使學(xué)生掌握完整的基礎(chǔ)知識,培養(yǎng)學(xué)生數(shù)學(xué)思維能力 ,抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。

5、自始至終貫徹教學(xué)四環(huán)節(jié)(引入、探究、例析、反饋),針對不同的教材內(nèi)容選擇不同教法,提倡創(chuàng)新教學(xué)方法,把學(xué)生被動接受知識轉(zhuǎn)化主動學(xué)習(xí)知識。

6、重視數(shù)學(xué)應(yīng)用意識及應(yīng)用能力的培養(yǎng)。

7、加強學(xué)生良好學(xué)習(xí)習(xí)慣的培養(yǎng)

六、教學(xué)時間大致安排

集合與函數(shù)概念 13 課時

基本初等函數(shù) 15 課時

函數(shù)的應(yīng)用 8課時

三角函數(shù) 24課時

平面向量 14 課時

三角恒等變換 9 課時

您可能關(guān)注的文檔