心得體會(huì)是對(duì)某一經(jīng)驗(yàn)或事件的感受、認(rèn)識(shí)和思考的總結(jié)表達(dá),它可以幫助我們深刻理解和反思自身的成長(zhǎng)和發(fā)展。心得體會(huì)能夠讓我們更好地認(rèn)識(shí)自己,發(fā)現(xiàn)自己的優(yōu)點(diǎn)和不足,為未來的改進(jìn)提供指導(dǎo)和依據(jù)。心得體會(huì)可以幫助我們提升學(xué)習(xí)能力和工作效率,提高自身綜合素質(zhì),是一種寶貴的經(jīng)驗(yàn)積累和成長(zhǎng)的標(biāo)志。心得體會(huì)是我們?cè)趯W(xué)習(xí)和工作生活中不可或缺的一部分,它能夠幫助我們總結(jié)經(jīng)驗(yàn)、提煉規(guī)律、探索問題的解決辦法,同時(shí)也是我們與他人進(jìn)行交流、分享和互相學(xué)習(xí)的橋梁。在寫一篇較為完美的心得體會(huì)時(shí),首先要明確自己的目的和主題,找準(zhǔn)要總結(jié)和概括的內(nèi)容;其次,要有條理地進(jìn)行思考和整理,將經(jīng)驗(yàn)和感悟有機(jī)地組織起來;還要注意語言的表達(dá),用簡(jiǎn)練明確的語句將自己的思想和觀點(diǎn)表達(dá)清楚。以下是小編為大家選取的一些心得體會(huì)范文,供大家參考和參考。
統(tǒng)計(jì)與大數(shù)據(jù)心得體會(huì)精選篇一
大數(shù)據(jù)時(shí)代已經(jīng)悄然到來,如何應(yīng)對(duì)大數(shù)據(jù)時(shí)代帶來的挑戰(zhàn)與機(jī)遇,是我們當(dāng)代大學(xué)生特別是我們計(jì)算機(jī)類專業(yè)的大學(xué)生的一個(gè)必須面對(duì)的嚴(yán)峻課題。大數(shù)據(jù)時(shí)代是我們的一個(gè)黃金時(shí)代,對(duì)我們的意義可以說就像是另一個(gè)“80年代”。在講座中秦永彬博士由一個(gè)電視劇《大太監(jiān)》中情節(jié)來深入淺出的簡(jiǎn)單介紹了“大數(shù)據(jù)”的基本概念,并由“塔吉特”與“犯罪預(yù)測(cè)”兩個(gè)案例讓我們深切的體會(huì)到了“大數(shù)據(jù)”的對(duì)現(xiàn)今這樣一個(gè)信息時(shí)代的不可替代的巨大作用。
在前幾年本世紀(jì)初的時(shí)候,世界都稱本世紀(jì)為“信息世紀(jì)”。確實(shí)在計(jì)算機(jī)技術(shù)與互聯(lián)網(wǎng)技術(shù)的飛速發(fā)展過后,我們面臨了一個(gè)每天都可以“信息爆炸”的時(shí)代。打開電視,打開電腦,甚至是在街上打開手機(jī)、pda、平板電腦等等,你都可以接收到來自互聯(lián)網(wǎng)從世界各地上傳的各類信息:數(shù)據(jù)、視頻、圖片、音頻……這樣各類大量的數(shù)據(jù)累積之后達(dá)到了引起量變的臨界值,數(shù)據(jù)本身有潛在的價(jià)值,但價(jià)值比較分散;數(shù)據(jù)高速產(chǎn)生,需高速處理。大數(shù)據(jù)意味著包括交易和交互數(shù)據(jù)集在內(nèi)的所有數(shù)據(jù)集,其規(guī)模或復(fù)雜程度超出了常用技術(shù)按照合理的成本和時(shí)限捕捉、管理及處理這些數(shù)據(jù)集的能力。遂有了“大數(shù)據(jù)”技術(shù)的應(yīng)運(yùn)而生。
現(xiàn)在,當(dāng)數(shù)據(jù)的積累量足夠大的時(shí)候到來時(shí),量變引起了質(zhì)變?!按髷?shù)據(jù)”通過對(duì)海量數(shù)據(jù)有針對(duì)性的分析,賦予了互聯(lián)網(wǎng)“智商”,這使得互聯(lián)網(wǎng)的作用,從簡(jiǎn)單的數(shù)據(jù)交流和信息傳遞,上升到基于海量數(shù)據(jù)的分析,一句話“他開始思考了”。簡(jiǎn)言之,大數(shù)據(jù)就是將碎片化的海量數(shù)據(jù)在一定的時(shí)間內(nèi)完成篩選、分析,并整理成為有用的資訊,幫助用戶完成決策。借助大數(shù)據(jù)企業(yè)的決策者可以迅速感知市場(chǎng)需求變化,從而促使他們作出對(duì)企業(yè)更有利的決策,使得這些企業(yè)擁有更強(qiáng)的創(chuàng)新力和競(jìng)爭(zhēng)力。這是繼云計(jì)算、物聯(lián)網(wǎng)之后it產(chǎn)業(yè)又一次顛覆性的技術(shù)變革,對(duì)國(guó)家治理模式、對(duì)企業(yè)的決策、組織和業(yè)務(wù)流程、對(duì)個(gè)人生活方式都將產(chǎn)生巨大的影響。后工業(yè)社會(huì)時(shí)代,隨著新興技術(shù)的發(fā)展與互聯(lián)網(wǎng)底層技術(shù)的革新,數(shù)據(jù)正在呈指數(shù)級(jí)增長(zhǎng),所有數(shù)據(jù)的產(chǎn)生形式,都是數(shù)字化。如何收集、管理和分析海量數(shù)據(jù)對(duì)于企業(yè)從事的一切商業(yè)活動(dòng)都顯得尤為重要。大數(shù)據(jù)時(shí)代是信息化社會(huì)發(fā)展必然趨勢(shì),我們只有緊緊跟隨時(shí)代發(fā)展的潮流,在技術(shù)上、制度上、價(jià)值觀念上做出迅速調(diào)整并牢牢跟進(jìn),才能在接下來新一輪的競(jìng)爭(zhēng)中擺脫受制于人的弱勢(shì)境地,才能把握發(fā)展的方向。
首先,“大數(shù)據(jù)”究竟是什么?它有什么用?這是當(dāng)下每個(gè)人初接觸“大數(shù)據(jù)”都會(huì)有的疑問,而這些疑問在秦博士的講座中我們都了解到了?!按髷?shù)據(jù)”的“大”不僅是單單純純指數(shù)量上的“大”,而是在諸多方面上闡釋了“大”的含義,是體現(xiàn)在數(shù)據(jù)信息是海量信息,且在動(dòng)態(tài)變化和不斷增長(zhǎng)之上。同時(shí)“大數(shù)據(jù)”在:速度(velocity)、多樣性(variety)、價(jià)值密度(value)、體量(volume)這四方面(4v)都有體現(xiàn)。其實(shí)“大數(shù)據(jù)”歸根結(jié)底還是數(shù)據(jù),其是一種泛化的數(shù)據(jù)描述形式,有別于以往對(duì)于數(shù)據(jù)信息的表達(dá),大數(shù)據(jù)更多地傾向于表達(dá)網(wǎng)絡(luò)用戶信息、新聞信息、銀行數(shù)據(jù)信息、社交媒體上的數(shù)據(jù)信息、購物網(wǎng)站上的用戶數(shù)據(jù)信息、規(guī)模超過tb級(jí)的數(shù)據(jù)信息等。
一、學(xué)習(xí)總結(jié)。
采用某些技術(shù),從技術(shù)中獲得洞察力,也就是bi或者分析,通過分析和優(yōu)化實(shí)現(xiàn)。
對(duì)企業(yè)未來運(yùn)營(yíng)的預(yù)測(cè)。
在如此快速的到來的大數(shù)據(jù)革命時(shí)代,我們還有很多知識(shí)需要學(xué)習(xí),許多思維需要轉(zhuǎn)變,許多技術(shù)需要研究。職業(yè)規(guī)劃中,也需充分考慮到大數(shù)據(jù)對(duì)于自身職業(yè)的未來發(fā)展所帶來的機(jī)遇和挑戰(zhàn)。當(dāng)我們掌握大量數(shù)據(jù),需要考慮有多少數(shù)字化的數(shù)據(jù),又有哪些可以通過大數(shù)據(jù)的分析處理而帶來有價(jià)值的用途?在大數(shù)據(jù)時(shí)代制勝的良藥也許是創(chuàng)新的點(diǎn)子,也許可以利用外部的數(shù)據(jù),通過多維化、多層面的分析給我們?nèi)蘸髣?chuàng)業(yè)帶來價(jià)值。借力,順勢(shì),合作共贏。
百度百科中是這么解釋的:大數(shù)據(jù)(bigdata),指無法在可承受的時(shí)間范圍內(nèi)用常規(guī)軟件工具進(jìn)行捕捉、管理和處理的數(shù)據(jù)集合,是需要新處理模式才能具有更強(qiáng)的決策力、洞察發(fā)現(xiàn)力和流程優(yōu)化能力來適應(yīng)海量、高增長(zhǎng)率和多樣化的信息資產(chǎn)。我最開始了解大數(shù)據(jù)是從《大數(shù)據(jù)時(shí)代》了解到的。
大數(shù)據(jù)在幾年特別火爆,不知道是不是以前沒關(guān)注的原因,從各種渠道了解了大數(shù)據(jù)以后,就決定開始學(xué)習(xí)了。
二、開始學(xué)習(xí)之旅。
在科多大數(shù)據(jù)學(xué)習(xí)這段時(shí)間,覺得時(shí)間過的很快,講課的老師,是國(guó)家大數(shù)據(jù)標(biāo)準(zhǔn)制定專家組成員,也是一家企業(yè)的大數(shù)據(jù)架構(gòu)師,老師上課忒耐心,上課方式也很好,經(jīng)常給我們講一些項(xiàng)目中的感受和經(jīng)驗(yàn),果然面對(duì)面上課效果好!
如果有問題,老師會(huì)一直講到你懂,這點(diǎn)必須贊。上課時(shí)間有限,我在休息時(shí)間也利用他們的仿真實(shí)操系統(tǒng)不斷的練習(xí),剛開始確實(shí)有些迷糊,覺得很難學(xué),到后來慢慢就入門了,學(xué)習(xí)起來就容易多了,堅(jiān)持練習(xí),最重要的就是堅(jiān)持。
統(tǒng)計(jì)與大數(shù)據(jù)心得體會(huì)精選篇二
隨著云計(jì)算和物聯(lián)網(wǎng)的日漸普及,大數(shù)據(jù)逐漸成為各行各業(yè)的核心資源。然而,海量的數(shù)據(jù)需要采取一些有效措施來處理和分析,以便提高數(shù)據(jù)質(zhì)量和精度。由此,數(shù)據(jù)預(yù)處理成為數(shù)據(jù)挖掘中必不可少的環(huán)節(jié)。在這篇文章中,我將分享一些在大數(shù)據(jù)預(yù)處理方面的心得體會(huì),希望能夠幫助讀者更好地應(yīng)對(duì)這一挑戰(zhàn)。
作為數(shù)據(jù)挖掘的第一步,預(yù)處理的作用不能被忽視。一方面,在真實(shí)世界中采集的數(shù)據(jù)往往不夠完整和準(zhǔn)確,需要通過數(shù)據(jù)預(yù)處理來清理和過濾;另一方面,數(shù)據(jù)預(yù)處理還可以通過特征選取、數(shù)據(jù)變換和數(shù)據(jù)采樣等方式,將原始數(shù)據(jù)轉(zhuǎn)化為更符合建模需求的格式,從而提高建模的精度和效率。
數(shù)據(jù)預(yù)處理的方法有很多,要根據(jù)不同的數(shù)據(jù)情況和建模目的來選擇適當(dāng)?shù)姆椒?。在我?shí)際工作中,用到比較多的包括數(shù)據(jù)清理、數(shù)據(jù)變換和離散化等方法。其中,數(shù)據(jù)清理主要包括異常值處理、缺失值填充和重復(fù)值刪除等;數(shù)據(jù)變換主要包括歸一化、標(biāo)準(zhǔn)化和主成分分析等;而離散化則可以將連續(xù)值離散化為有限個(gè)數(shù)的區(qū)間值,方便后續(xù)分類和聚類等操作。
第四段:實(shí)踐中的應(yīng)用。
雖然看起來理論很簡(jiǎn)單,但在實(shí)踐中往往遇到各種各樣的問題。比如,有時(shí)候需要自己編寫一些腳本來自動(dòng)化數(shù)據(jù)預(yù)處理的過程。而這需要我們對(duì)數(shù)據(jù)的文件格式、數(shù)據(jù)類型和編程技巧都非常熟悉。此外,在實(shí)際數(shù)據(jù)處理中,還需要經(jīng)常性地檢查和驗(yàn)證處理結(jié)果,確保數(shù)據(jù)質(zhì)量達(dá)到預(yù)期。
第五段:總結(jié)。
綜上所述,數(shù)據(jù)預(yù)處理是數(shù)據(jù)挖掘中非常重要的一步,它可以提高數(shù)據(jù)質(zhì)量、加快建模速度和提升建模效果。在實(shí)際應(yīng)用中,我們需要結(jié)合具體業(yè)務(wù)情況和數(shù)據(jù)特征來選擇適當(dāng)?shù)念A(yù)處理方法,同時(shí)也需要不斷總結(jié)經(jīng)驗(yàn),提高處理效率和精度。總之,數(shù)據(jù)預(yù)處理是數(shù)據(jù)挖掘中的一道不可或缺的工序,只有通過正確的方式和方法,才能獲得可靠和準(zhǔn)確的數(shù)據(jù)信息。
統(tǒng)計(jì)與大數(shù)據(jù)心得體會(huì)精選篇三
隨著大數(shù)據(jù)時(shí)代的到來,數(shù)據(jù)成為企業(yè)和個(gè)人獲取信息和分析趨勢(shì)的主要手段。然而,數(shù)據(jù)的數(shù)量和質(zhì)量對(duì)數(shù)據(jù)分析的影響不能忽視。因此,在數(shù)據(jù)分析之前,數(shù)據(jù)預(yù)處理是必須的。數(shù)據(jù)預(yù)處理的目的是為了清理,轉(zhuǎn)換,集成和規(guī)范數(shù)據(jù),以便數(shù)據(jù)分析師可以準(zhǔn)確地分析和解釋數(shù)據(jù)并做出有效的決策。
二、數(shù)據(jù)清理。
數(shù)據(jù)清理是數(shù)據(jù)預(yù)處理的第一個(gè)步驟,它主要是為了去除數(shù)據(jù)中的異常,重復(fù),缺失或錯(cuò)誤的數(shù)據(jù)。一方面,這可以幫助分析師得到更干凈和準(zhǔn)確的數(shù)據(jù),另一方面,也可以提高數(shù)據(jù)分析的效率和可靠性。在我的工作中,我通常使用數(shù)據(jù)可視化工具和數(shù)據(jù)分析軟件幫助我清理數(shù)據(jù)。這些工具非常強(qiáng)大,可以自動(dòng)檢測(cè)錯(cuò)誤和異常數(shù)據(jù),同時(shí)還提供了人工干預(yù)的選項(xiàng)。
三、數(shù)據(jù)轉(zhuǎn)換。
數(shù)據(jù)轉(zhuǎn)換是數(shù)據(jù)預(yù)處理的第二個(gè)步驟,其主要目的是將不規(guī)則或不兼容的數(shù)據(jù)轉(zhuǎn)換為標(biāo)準(zhǔn)的格式。例如,數(shù)據(jù)集中的日期格式可能不同,需要將它們轉(zhuǎn)換為統(tǒng)一的日期格式。這里,我使用了Python的pandas庫來處理更復(fù)雜的數(shù)據(jù)集。此外,我還經(jīng)常使用Excel公式和宏來轉(zhuǎn)換數(shù)據(jù),這些工具非常靈活,可以快速有效地完成工作。
四、數(shù)據(jù)集成和規(guī)范化。
數(shù)據(jù)集成是將多個(gè)不同來源的數(shù)據(jù)集合并成一個(gè)整體,以便進(jìn)行更全面的數(shù)據(jù)分析。但要注意,數(shù)據(jù)的集成需要保證數(shù)據(jù)的一致性和完整性。因此,數(shù)據(jù)集成時(shí)需要規(guī)范化數(shù)據(jù),消除數(shù)據(jù)之間的差異。在工作中,我通常使用SQL來集成和規(guī)范化數(shù)據(jù),這使得數(shù)據(jù)處理更加高效和精確。
五、總結(jié)。
數(shù)據(jù)預(yù)處理是數(shù)據(jù)分析過程中不可或缺的一步。只有經(jīng)過數(shù)據(jù)預(yù)處理的數(shù)據(jù)才能夠?yàn)槲覀兲峁?zhǔn)確和可靠的分析結(jié)果。數(shù)據(jù)預(yù)處理需要細(xì)心和耐心,同時(shí),數(shù)據(jù)分析師也需要具備豐富的經(jīng)驗(yàn)和技能。在我的實(shí)踐中,我發(fā)現(xiàn),學(xué)習(xí)數(shù)據(jù)預(yù)處理的過程是很有趣和有價(jià)值的,我相信隨著數(shù)據(jù)分析的不斷發(fā)展和應(yīng)用,數(shù)據(jù)預(yù)處理的作用將越來越受到重視。
統(tǒng)計(jì)與大數(shù)據(jù)心得體會(huì)精選篇四
隨著信息技術(shù)的快速發(fā)展,大數(shù)據(jù)已經(jīng)成為了當(dāng)代社會(huì)最為炙手可熱的話題之一。作為信息時(shí)代的產(chǎn)物,大數(shù)據(jù)給我們的生活帶來了巨大的改變。最近,我讀了一本名為《大數(shù)據(jù)》的書,在閱讀過程中,讓我對(duì)大數(shù)據(jù)有了更深的認(rèn)識(shí)。下面我將與大家分享一下我的體會(huì)。
首先,大數(shù)據(jù)讓我們的生活更加便利?,F(xiàn)如今,大數(shù)據(jù)技術(shù)得到了廣泛的應(yīng)用,人們可以通過各種技術(shù)手段輕松地獲取所需的信息。無論是購物、出行還是旅游,我們都能夠通過大數(shù)據(jù)獲取到最新的產(chǎn)品信息、路線規(guī)劃以及景點(diǎn)推薦,從而為我們的生活提供了諸多便利。比如,每當(dāng)我需要購買產(chǎn)品時(shí),只需在電子商務(wù)平臺(tái)上輸入關(guān)鍵詞,便可獲得大量的搜索結(jié)果,同時(shí)還能通過查看其他用戶的評(píng)價(jià)來進(jìn)行篩選,這使得我們能夠更加輕松地做出購買決策。
其次,大數(shù)據(jù)為商業(yè)發(fā)展提供了新的機(jī)遇。隨著大數(shù)據(jù)技術(shù)的不斷改進(jìn),越來越多的企業(yè)開始使用大數(shù)據(jù)分析手段來處理海量的數(shù)據(jù),從而找到市場(chǎng)的空白點(diǎn),為企業(yè)創(chuàng)造更多商機(jī)。例如,通過對(duì)大數(shù)據(jù)的分析,電商平臺(tái)能夠通過用戶的購買行為了解用戶的興趣愛好,并根據(jù)這些數(shù)據(jù)進(jìn)行精確的產(chǎn)品定位和個(gè)性化推薦,從而提高銷售額。大數(shù)據(jù)的出現(xiàn),使得商業(yè)發(fā)展更加精準(zhǔn)和高效,企業(yè)可以更加了解消費(fèi)者的需求,提供更好的產(chǎn)品和服務(wù)。
再次,大數(shù)據(jù)為決策提供了科學(xué)依據(jù)。無論是政府還是企事業(yè)單位,在制訂政策和規(guī)劃發(fā)展戰(zhàn)略時(shí),都需要基于大量的數(shù)據(jù)進(jìn)行決策。大數(shù)據(jù)的出現(xiàn)讓決策者可以更加客觀地了解社會(huì)經(jīng)濟(jì)現(xiàn)狀,分析各種數(shù)據(jù)之間的關(guān)系以及相關(guān)因素對(duì)決策結(jié)果的影響,從而做出更加明智的決策。比如,在交通規(guī)劃方面,利用大數(shù)據(jù)可以實(shí)時(shí)監(jiān)測(cè)交通擁堵情況,分析交通流量以及不同道路之間的關(guān)系,從而優(yōu)化交通路線,提高交通效率。大數(shù)據(jù)的運(yùn)用,為決策者提供了更準(zhǔn)確的信息,幫助他們做出科學(xué)合理的決策。
最后,大數(shù)據(jù)也帶來了一系列的挑戰(zhàn)和問題。首先,數(shù)據(jù)安全問題成為了一個(gè)亟待解決的難題。大數(shù)據(jù)的存儲(chǔ)和傳輸需要龐大的計(jì)算資源,但與此同時(shí),也給數(shù)據(jù)安全帶來了巨大的挑戰(zhàn)。隨著黑客技術(shù)的不斷發(fā)展,數(shù)據(jù)泄露和隱私侵犯的風(fēng)險(xiǎn)也在逐漸增加。其次,大數(shù)據(jù)的過濾和分析需要高度專業(yè)的技術(shù)和人才。大量的數(shù)據(jù)對(duì)于普通人來說是一種負(fù)擔(dān)和困擾,如果沒有足夠的專業(yè)人才來進(jìn)行數(shù)據(jù)的處理和分析,那將影響到大數(shù)據(jù)的應(yīng)用和發(fā)展。
總而言之,大數(shù)據(jù)給我們的生活和社會(huì)帶來了諸多的變化和好處,但也面臨著一些挑戰(zhàn)和問題。我認(rèn)為,我們應(yīng)該在充分利用大數(shù)據(jù)的優(yōu)勢(shì)的同時(shí),加強(qiáng)數(shù)據(jù)安全的保護(hù)和專業(yè)人才的培養(yǎng)。只有這樣,我們才能更好地應(yīng)對(duì)大數(shù)據(jù)時(shí)代的挑戰(zhàn)和機(jī)遇,并為我們的生活和社會(huì)發(fā)展創(chuàng)造更加美好的未來。
統(tǒng)計(jì)與大數(shù)據(jù)心得體會(huì)精選篇五
隨著科技的不斷發(fā)展和智能化的趨勢(shì),物流行業(yè)也在不斷地變革和進(jìn)步。而物流大數(shù)據(jù)作為信息時(shí)代的產(chǎn)物,正逐漸成為物流行業(yè)的重要力量。通過運(yùn)用物流大數(shù)據(jù),企業(yè)能夠更好地進(jìn)行預(yù)測(cè)和優(yōu)化,提高運(yùn)輸效率和降低成本。本文將從數(shù)據(jù)收集、分析和應(yīng)用三個(gè)方面,探討物流大數(shù)據(jù)在現(xiàn)代物流行業(yè)中的作用和心得體會(huì)。
首先,物流大數(shù)據(jù)的核心在于數(shù)據(jù)收集。在整個(gè)物流過程中,各個(gè)環(huán)節(jié)都會(huì)產(chǎn)生大量的數(shù)據(jù),包括產(chǎn)品信息、訂單信息、倉儲(chǔ)信息、運(yùn)輸信息等等。而對(duì)這些數(shù)據(jù)的有效收集和整理,是物流大數(shù)據(jù)的第一步。只有通過全面而準(zhǔn)確地收集數(shù)據(jù),才能為后續(xù)的分析和應(yīng)用打下堅(jiān)實(shí)的基礎(chǔ)。因此,物流企業(yè)需要建立完善的數(shù)據(jù)收集機(jī)制,包括設(shè)立數(shù)據(jù)采集點(diǎn)、使用先進(jìn)的傳感器技術(shù)等,以確保數(shù)據(jù)的準(zhǔn)確性和完整性。同時(shí),還需要制定相應(yīng)的數(shù)據(jù)管理和存儲(chǔ)政策,確保數(shù)據(jù)的安全性和可追溯性。
其次,物流大數(shù)據(jù)的核心在于數(shù)據(jù)分析。通過對(duì)收集到的大數(shù)據(jù)進(jìn)行科學(xué)和合理的分析,能夠幫助企業(yè)發(fā)現(xiàn)潛在問題和機(jī)會(huì),優(yōu)化運(yùn)營(yíng)流程和提升客戶滿意度。在數(shù)據(jù)分析的過程中,可以利用數(shù)據(jù)挖掘、機(jī)器學(xué)習(xí)和人工智能等技術(shù),對(duì)數(shù)據(jù)進(jìn)行深度挖掘和解讀。例如,通過對(duì)歷史訂單數(shù)據(jù)的分析,可以發(fā)現(xiàn)消費(fèi)者的購買偏好和行為習(xí)慣,從而優(yōu)化庫存管理和配送路線規(guī)劃。又如,通過對(duì)實(shí)時(shí)運(yùn)輸數(shù)據(jù)的分析,可以實(shí)現(xiàn)對(duì)運(yùn)輸進(jìn)程的實(shí)時(shí)監(jiān)控和預(yù)測(cè),避免延誤和損失。因此,數(shù)據(jù)分析在物流大數(shù)據(jù)中扮演著關(guān)鍵的角色,它為企業(yè)提供了更多的決策依據(jù)和戰(zhàn)略思考。
最后,物流大數(shù)據(jù)的核心在于數(shù)據(jù)應(yīng)用。收集和分析數(shù)據(jù)只是物流大數(shù)據(jù)的前兩個(gè)環(huán)節(jié),真正的價(jià)值在于將數(shù)據(jù)應(yīng)用到實(shí)際的運(yùn)營(yíng)中。通過合理地利用物流大數(shù)據(jù),企業(yè)能夠提高整個(gè)供應(yīng)鏈的可視性和透明度,優(yōu)化運(yùn)輸和配送流程,提高客戶滿意度。例如,通過大數(shù)據(jù)分析,企業(yè)可以實(shí)現(xiàn)對(duì)庫存和庫房的精確管理,避免過量或過少的庫存,提高利潤(rùn)和資金使用效率。又如,通過大數(shù)據(jù)分析,企業(yè)可以實(shí)現(xiàn)對(duì)貨物的實(shí)時(shí)跟蹤和定位,提高運(yùn)輸?shù)臏?zhǔn)確性和效率。因此,數(shù)據(jù)應(yīng)用是物流大數(shù)據(jù)能否發(fā)揮價(jià)值的關(guān)鍵環(huán)節(jié),它需要企業(yè)有正確的決策和行動(dòng)能力。
總結(jié)而言,物流大數(shù)據(jù)在現(xiàn)代物流行業(yè)中扮演著重要的角色。數(shù)據(jù)的收集、分析和應(yīng)用是物流大數(shù)據(jù)的核心,也是企業(yè)在運(yùn)用物流大數(shù)據(jù)時(shí)需要注意和努力的方面。只有將物流大數(shù)據(jù)與企業(yè)實(shí)際運(yùn)營(yíng)緊密結(jié)合起來,才能實(shí)現(xiàn)物流行業(yè)的創(chuàng)新和提升。因此,我對(duì)物流大數(shù)據(jù)的心得體會(huì)就是,在收集數(shù)據(jù)時(shí)要準(zhǔn)確完整,在分析數(shù)據(jù)時(shí)要科學(xué)合理,在應(yīng)用數(shù)據(jù)時(shí)要有正確的決策和行動(dòng)能力。通過這樣的方式,我們才能更好地利用物流大數(shù)據(jù),推動(dòng)物流行業(yè)的發(fā)展,為社會(huì)經(jīng)濟(jì)的繁榮做出貢獻(xiàn)。
統(tǒng)計(jì)與大數(shù)據(jù)心得體會(huì)精選篇六
信息時(shí)代的到來,我們感受到的是技術(shù)變化日新月異,隨之而來的是生活方式的轉(zhuǎn)變,我們這樣評(píng)論著的信息時(shí)代已經(jīng)變?yōu)樵?jīng)。如今,大數(shù)據(jù)時(shí)代成為炙手可熱的話題。
信息和數(shù)據(jù)的定義。維基百科解釋:信息,又稱資訊,是一個(gè)高度概括抽象概念,是一個(gè)發(fā)展中的動(dòng)態(tài)范疇,是進(jìn)行互相交換的內(nèi)容和名稱,信息的界定沒有統(tǒng)一的定義,但是信息具備客觀、動(dòng)態(tài)、傳遞、共享、經(jīng)濟(jì)等特性卻是大家的共識(shí)。數(shù)據(jù):或稱資料,指描述事物的符號(hào)記錄,是可定義為意義的實(shí)體,它涉及到事物的存在形式。它是關(guān)于事件之一組離散且客觀的事實(shí)描述,是構(gòu)成信息和知識(shí)的原始材料。數(shù)據(jù)可分為模擬數(shù)據(jù)和數(shù)字?jǐn)?shù)據(jù)兩大類。數(shù)據(jù)指計(jì)算機(jī)加工的“原料”,如圖形、聲音、文字、數(shù)、字符和符號(hào)等。從定義看來,數(shù)據(jù)是原始的處女地,需要耕耘。信息則是已經(jīng)處理過的可以傳播的資訊。信息時(shí)代依賴于數(shù)據(jù)的爆發(fā),只是當(dāng)數(shù)據(jù)爆發(fā)到無法駕馭的狀態(tài),大數(shù)據(jù)時(shí)代應(yīng)運(yùn)而生。
在大數(shù)據(jù)時(shí)代,大數(shù)據(jù)時(shí)代區(qū)別與轉(zhuǎn)變就是,放棄對(duì)因果關(guān)系的渴求,而取而代之關(guān)注相關(guān)關(guān)系。也就是說只要知道“是什么”,而不需要知道“為什么”。數(shù)據(jù)的更多、更雜,導(dǎo)致應(yīng)用主意只能盡量觀察,而不是傾其所有進(jìn)行推理。小數(shù)據(jù)停留在說明過去,大數(shù)據(jù)用驅(qū)動(dòng)過去來預(yù)測(cè)未來。數(shù)據(jù)的用途意在何為,與數(shù)據(jù)本身無關(guān),而與數(shù)據(jù)的解讀者有關(guān),而相關(guān)關(guān)系更有利于預(yù)測(cè)未來。大數(shù)據(jù)更多的體現(xiàn)在海量非結(jié)構(gòu)化數(shù)據(jù)本身與處理方法的整合。大數(shù)據(jù)更像是理論與現(xiàn)實(shí)齊頭并進(jìn),理論來創(chuàng)立處理非結(jié)構(gòu)化數(shù)據(jù)的方法,處理結(jié)果與未來進(jìn)行驗(yàn)證。大數(shù)據(jù)是在互聯(lián)網(wǎng)背景下數(shù)據(jù)從量變到質(zhì)變的過程。小數(shù)據(jù)時(shí)代也即是信息時(shí)代,是大數(shù)據(jù)時(shí)代的前提,大數(shù)據(jù)時(shí)代是升華和進(jìn)化,本質(zhì)是相輔相成,而并非相離互斥。
數(shù)據(jù)未來的故事。數(shù)據(jù)的發(fā)展,給我們帶來什么預(yù)期和啟示?金融業(yè)業(yè)天然有大數(shù)據(jù)的潛質(zhì)??蛻魯?shù)據(jù)、交易數(shù)據(jù)、管理數(shù)據(jù)等海量數(shù)據(jù)不斷增長(zhǎng),海量機(jī)遇和挑戰(zhàn)也隨之而來,適應(yīng)變革,適者生存。我們可以有更廣闊的學(xué)習(xí)空間、可以有更精準(zhǔn)的決策判斷能力這些都基于數(shù)據(jù)的收集、整理、駕馭、分析能力,基于脫穎而出的創(chuàng)新思維和執(zhí)行。因此,建設(shè)“數(shù)據(jù)倉庫”,培養(yǎng)“數(shù)據(jù)思維”,養(yǎng)成“數(shù)據(jù)治理”,創(chuàng)造“數(shù)據(jù)融合”,實(shí)現(xiàn)“數(shù)據(jù)應(yīng)用”才能擁抱“大數(shù)據(jù)”時(shí)代,從數(shù)據(jù)中攫取價(jià)值,笑看風(fēng)云變換,穩(wěn)健贏取未來。
一部似乎還沒有寫完的書。
——讀《大數(shù)據(jù)時(shí)代》有感及所思。
讀了《大數(shù)據(jù)時(shí)代》后,感覺到一個(gè)大變革的時(shí)代將要來臨。雖然還不怎么明了到底要徹底改變哪些思維和操作方式,但顯然作者想要“終結(jié)”或顛覆一些傳統(tǒng)上作為我們思維和生存基本理論、方法和方式。在這樣的想法面前,我的思想被強(qiáng)烈震撼,不禁戰(zhàn)栗起來。“在小數(shù)據(jù)時(shí)代,我們會(huì)假象世界是怎樣運(yùn)作的,然后通過收集和分析數(shù)據(jù)來驗(yàn)證這種假想?!薄半S著由假想時(shí)代到數(shù)據(jù)時(shí)代的過渡,我們也很可能認(rèn)為我們不在需要理論了。”書中幾乎肯定要顛覆統(tǒng)計(jì)學(xué)的理論和方法,也試圖通過引用《連線》雜志主編安德森的話“量子物理學(xué)的理論已經(jīng)脫離實(shí)際”來“終結(jié)”量子力學(xué)。對(duì)此我很高興,因?yàn)榻y(tǒng)計(jì)學(xué)和量子力學(xué)都是我在大學(xué)學(xué)習(xí)時(shí)學(xué)到抽筋都不能及格的課目。但這兩個(gè)理論實(shí)在太大,太權(quán)威,太基本了,我想我不可能靠一本書就能擺脫這兩個(gè)讓我頭疼一輩子的東西。作者其實(shí)也不敢旗幟鮮明地提出要顛覆它們的論點(diǎn),畢竟還是在前面加上了“很可能認(rèn)為”這樣的保護(hù)傘。
有偏見”,跟作者一起先把統(tǒng)計(jì)學(xué)和量子力學(xué)否定掉再說。反正我也不喜歡、也學(xué)不會(huì)它們。
當(dāng)我們?nèi)祟惖臄?shù)據(jù)收集和處理能力達(dá)到拍字節(jié)甚至更大之后,我們可以把樣本變成全部,再加上有能力正視混雜性而忽視精確性后,似乎真的可以拋棄以抽樣調(diào)查為基礎(chǔ)的統(tǒng)計(jì)學(xué)了。但是由統(tǒng)計(jì)學(xué)和量子力學(xué)以及其他很多“我們也很可能認(rèn)為我們不再需要的”理論上溯,它們幾乎都基于一個(gè)共同的基礎(chǔ)——邏輯。要是不小心把邏輯或者邏輯思維或者邏輯推理一起給“不再需要”的話,就讓我很擔(dān)心了!《大數(shù)據(jù)時(shí)代》第16頁“大數(shù)據(jù)的核心就是預(yù)測(cè)”。邏輯是——描述時(shí)空信息“類”與“類”之間長(zhǎng)時(shí)間有效不變的先后變化關(guān)系規(guī)則。兩者似乎是做同一件事??纱髷?shù)據(jù)要的“不是因果關(guān)系,而是相關(guān)關(guān)系”,“知道是什么就夠了,沒必要知道為什么”,而邏輯學(xué)四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明確規(guī)定”任何事物都有其存在的充足理由。且邏輯推理三部分——?dú)w納邏輯、溯因邏輯和演繹邏輯都是基于因果關(guān)系。兩者好像又是對(duì)立的。在同一件事上兩種方法對(duì)立,應(yīng)該只有一個(gè)結(jié)果,就是要否定掉其中之一。這就是讓我很擔(dān)心的原因。
可我卻不能拭目以待,像旁觀者一樣等著哪一個(gè)“脫穎而出”,因?yàn)槲疑硖幤渲?。問題不解決,我就沒法思考和工作,自然就沒法活了!
更何況還有兩個(gè)更可怕的事情。
其二:人和機(jī)器的根本區(qū)別在于人有邏輯思維而機(jī)器沒有?!洞髷?shù)據(jù)時(shí)代》也擔(dān)心“最后做出決策的將是機(jī)器而不是人”。如果真的那一天因?yàn)榉艞夁壿嬎季S而出現(xiàn)科幻電影上描述的機(jī)器主宰世界消滅人類的結(jié)果,那我還不如現(xiàn)在就趁早跳樓。
都是在胡說八道,所謂的擔(dān)心根本不存在。但問題出現(xiàn)了,還是解決的好,不然沒法睡著覺。自己解決不了就只能依靠專家來指點(diǎn)迷津。
所以想向《大數(shù)據(jù)時(shí)代》的作者提一個(gè)合理化建議:把這本書繼續(xù)寫下去,至少加一個(gè)第四部分——大數(shù)據(jù)時(shí)代的邏輯思維。
合纖部車民。
2013年11月10日。
一、學(xué)習(xí)總結(jié)。
采用某些技術(shù),從技術(shù)中獲得洞察力,也就是bi或者分析,通過分析和優(yōu)化實(shí)現(xiàn)。
對(duì)企業(yè)未來運(yùn)營(yíng)的預(yù)測(cè)。
在如此快速的到來的大數(shù)據(jù)革命時(shí)代,我們還有很多知識(shí)需要學(xué)習(xí),許多思維需要轉(zhuǎn)變,許多技術(shù)需要研究。職業(yè)規(guī)劃中,也需充分考慮到大數(shù)據(jù)對(duì)于自身職業(yè)的未來發(fā)展所帶來的機(jī)遇和挑戰(zhàn)。當(dāng)我們掌握大量數(shù)據(jù),需要考慮有多少數(shù)字化的數(shù)據(jù),又有哪些可以通過大數(shù)據(jù)的分析處理而帶來有價(jià)值的用途?在大數(shù)據(jù)時(shí)代制勝的良藥也許是創(chuàng)新的點(diǎn)子,也許可以利用外部的數(shù)據(jù),通過多維化、多層面的分析給我們?nèi)蘸髣?chuàng)業(yè)帶來價(jià)值。借力,順勢(shì),合作共贏。
統(tǒng)計(jì)與大數(shù)據(jù)心得體會(huì)精選篇七
Hadoop作為大數(shù)據(jù)領(lǐng)域中的重要工具,其開源的特性和高效的數(shù)據(jù)處理能力越來越得到廣泛的應(yīng)用。在實(shí)際應(yīng)用中,我們對(duì)Hadoop的使用也逐步深入,從中汲取了許多經(jīng)驗(yàn)和教訓(xùn)。在此,我會(huì)從搭建Hadoop集群、數(shù)據(jù)清洗、分析處理、性能優(yōu)化和可視化展示五個(gè)方面分享一下我的心得體會(huì)。
一、搭建Hadoop集群。
搭建Hadoop集群是整個(gè)數(shù)據(jù)處理的第一步,也是最為關(guān)鍵的一步。在這一過程中,我們需要考慮到硬件選擇、網(wǎng)絡(luò)環(huán)境、安全管理等方面。過程中的任何一個(gè)小錯(cuò)誤都可能會(huì)導(dǎo)致整個(gè)集群的崩潰?;谶@些考慮,我們需要進(jìn)行詳細(xì)的規(guī)劃和準(zhǔn)備,進(jìn)行逐步的測(cè)試和驗(yàn)證,確保能夠成功地搭建起集群。
二、數(shù)據(jù)清洗。
Hadoop的數(shù)據(jù)處理能力是其最大的亮點(diǎn),但在實(shí)際應(yīng)用中,數(shù)據(jù)的質(zhì)量也是決定分析結(jié)果的關(guān)鍵因素。在進(jìn)行數(shù)據(jù)處理之前,我們需要對(duì)數(shù)據(jù)進(jìn)行初步的清洗和預(yù)處理。這包括在數(shù)據(jù)中發(fā)現(xiàn)問題和錯(cuò)誤,并將其糾正,以及對(duì)數(shù)據(jù)中的異常值進(jìn)行排除。通過對(duì)數(shù)據(jù)的清洗和預(yù)處理,我們可以提高數(shù)據(jù)的質(zhì)量,確保更加準(zhǔn)確的分析結(jié)果。
三、分析處理。
Hadoop的大數(shù)據(jù)處理能力在這一階段得到了最大的展示。在進(jìn)行分析處理時(shí),我們首先需要確定分析目標(biāo),并對(duì)數(shù)據(jù)進(jìn)行針對(duì)性的處理。數(shù)據(jù)處理的方式包括數(shù)據(jù)切分、聚合、過濾等。我們還可以利用MapReduce、Hive、Pig等工具進(jìn)行分析計(jì)算。在處理過程中,我們還需要注意對(duì)數(shù)據(jù)的去重、篩選、轉(zhuǎn)換等方面,從而得到更為準(zhǔn)確的結(jié)果。
四、性能優(yōu)化。
在使用Hadoop進(jìn)行數(shù)據(jù)處理的過程中,內(nèi)存的使用是其中重要的方面。我們需要在數(shù)據(jù)處理時(shí)對(duì)內(nèi)存使用進(jìn)行優(yōu)化,提高算法的效率。在數(shù)據(jù)讀寫和網(wǎng)絡(luò)傳輸?shù)确矫?,我們也需要盡可能地提高其效率,來增強(qiáng)Hadoop的處理能力。這一方面需要的是合理的調(diào)度策略、良好的算法實(shí)現(xiàn)、有效的系統(tǒng)測(cè)試等方面的支持。
五、可視化展示。
通過對(duì)數(shù)據(jù)的處理和分析,我們需要對(duì)獲得的結(jié)果進(jìn)行展示。在這一方面,我們可以使用Hadoop提供的一系列Web界面進(jìn)行展示,同時(shí)還可以利用一些可視化工具將數(shù)據(jù)進(jìn)行圖像化處理。通過這些方式,我們可以更加直觀地觀察到數(shù)據(jù)分析的結(jié)果,從而更好地應(yīng)用到實(shí)際業(yè)務(wù)場(chǎng)景中。
總之,Hadoop的應(yīng)用已逐漸地從科技領(lǐng)域異軍突起,成為處于大數(shù)據(jù)領(lǐng)域變革前沿的重要工具。在實(shí)際應(yīng)用中,我從搭建Hadoop集群、數(shù)據(jù)清洗、分析處理、性能優(yōu)化和可視化展示五個(gè)方面體會(huì)到了很多經(jīng)驗(yàn)和教訓(xùn),不斷地挑戰(zhàn)和改進(jìn)我們的技術(shù)與思路,才能更好地推動(dòng)Hadoop的應(yīng)用發(fā)展。
統(tǒng)計(jì)與大數(shù)據(jù)心得體會(huì)精選篇八
隨著科技的發(fā)展,大數(shù)據(jù)逐漸在金融領(lǐng)域得到應(yīng)用,它的出現(xiàn)為金融統(tǒng)計(jì)提供了更多可能性和機(jī)會(huì)。作為一名金融從業(yè)者,我深感大數(shù)據(jù)統(tǒng)計(jì)的重要性。下面,我將從數(shù)據(jù)收集、數(shù)據(jù)分析、決策制定、風(fēng)險(xiǎn)管理和市場(chǎng)預(yù)測(cè)等五個(gè)方面,分享我在大數(shù)據(jù)金融統(tǒng)計(jì)方面的心得體會(huì)。
首先,數(shù)據(jù)收集是大數(shù)據(jù)金融統(tǒng)計(jì)的基礎(chǔ)。在進(jìn)行統(tǒng)計(jì)分析之前,我們需要收集大量的數(shù)據(jù),而大數(shù)據(jù)技術(shù)可以幫助我們更加高效地獲取數(shù)據(jù)。例如,利用互聯(lián)網(wǎng)和人工智能技術(shù),我們可以從各種渠道獲取金融數(shù)據(jù)。然而,數(shù)據(jù)的收集并不簡(jiǎn)單,我們需要精準(zhǔn)的定位、篩選和整合,確保數(shù)據(jù)的準(zhǔn)確性和可用性。只有確保數(shù)據(jù)的可靠性,我們才能進(jìn)行后續(xù)的分析。
其次,數(shù)據(jù)分析是大數(shù)據(jù)金融統(tǒng)計(jì)的核心環(huán)節(jié)。大數(shù)據(jù)技術(shù)使得我們可以在短時(shí)間內(nèi)分析海量的數(shù)據(jù),并從中挖掘出有價(jià)值的信息。在數(shù)據(jù)分析中,我們可以利用各種數(shù)學(xué)統(tǒng)計(jì)模型和機(jī)器學(xué)習(xí)算法,對(duì)金融數(shù)據(jù)進(jìn)行分析,并找出其中的規(guī)律和趨勢(shì)。通過這些分析,我們可以更好地了解金融市場(chǎng)的動(dòng)態(tài)和變化,從而提供更準(zhǔn)確的決策支持。
決策制定是大數(shù)據(jù)金融統(tǒng)計(jì)所追求的核心目標(biāo)。通過數(shù)據(jù)收集和分析,我們可以得到更多的信息和見解,從而更加準(zhǔn)確地制定決策。例如,在金融投資領(lǐng)域,通過對(duì)股票市場(chǎng)的大數(shù)據(jù)分析,我們可以及時(shí)了解股票行情的變化,并根據(jù)數(shù)據(jù)分析結(jié)果制定相應(yīng)的投資策略。而這些策略往往能夠幫助我們?cè)诮鹑谑袌?chǎng)中獲得更好的收益。
風(fēng)險(xiǎn)管理是大數(shù)據(jù)金融統(tǒng)計(jì)的一項(xiàng)重要任務(wù)。在金融領(lǐng)域,風(fēng)險(xiǎn)是不可避免的。通過大數(shù)據(jù)金融統(tǒng)計(jì),我們可以更好地識(shí)別和控制風(fēng)險(xiǎn)。例如,在信貸風(fēng)險(xiǎn)管理中,我們可以通過對(duì)大量的貸款數(shù)據(jù)進(jìn)行分析,建立起精準(zhǔn)的風(fēng)險(xiǎn)評(píng)估模型,從而降低貸款風(fēng)險(xiǎn)。此外,通過對(duì)大數(shù)據(jù)的分析還可以幫助我們發(fā)現(xiàn)金融詐騙等非法活動(dòng)的跡象,并及時(shí)采取措施進(jìn)行干預(yù)和防范。
最后,大數(shù)據(jù)金融統(tǒng)計(jì)還可以幫助我們做出更準(zhǔn)確的市場(chǎng)預(yù)測(cè)。通過對(duì)大量的市場(chǎng)數(shù)據(jù)進(jìn)行建模和分析,我們可以發(fā)現(xiàn)市場(chǎng)的周期性和規(guī)律性。同時(shí),我們也可以利用大數(shù)據(jù)分析的結(jié)果來進(jìn)行市場(chǎng)預(yù)測(cè)。例如,在股票市場(chǎng)中,我們可以通過對(duì)歷史數(shù)據(jù)的回測(cè)和分析,來預(yù)測(cè)未來的市場(chǎng)走勢(shì)和趨勢(shì)。這將有助于我們做出更明智的投資決策。
綜上所述,大數(shù)據(jù)金融統(tǒng)計(jì)在金融領(lǐng)域發(fā)揮著重要的作用。通過數(shù)據(jù)收集和分析,我們能夠更好地了解金融市場(chǎng),制定更準(zhǔn)確的決策,降低風(fēng)險(xiǎn),同時(shí)也可以對(duì)市場(chǎng)進(jìn)行更準(zhǔn)確的預(yù)測(cè)。隨著大數(shù)據(jù)技術(shù)的不斷發(fā)展,我相信大數(shù)據(jù)金融統(tǒng)計(jì)將在未來的金融領(lǐng)域中發(fā)揮更加重要的作用。因此,我們應(yīng)積極學(xué)習(xí)和應(yīng)用大數(shù)據(jù)技術(shù),不斷探索和總結(jié)經(jīng)驗(yàn),以更好地應(yīng)對(duì)金融市場(chǎng)的挑戰(zhàn)。
統(tǒng)計(jì)與大數(shù)據(jù)心得體會(huì)精選篇九
隨著信息技術(shù)的飛速發(fā)展,現(xiàn)代社會(huì)中產(chǎn)生了大量的數(shù)據(jù),而這些數(shù)據(jù)需要被正確的收集、處理以及存儲(chǔ)。這就是大數(shù)據(jù)數(shù)據(jù)預(yù)處理的主要任務(wù)。數(shù)據(jù)預(yù)處理是數(shù)據(jù)分析、數(shù)據(jù)挖掘以及機(jī)器學(xué)習(xí)的第一步,這也就意味著它對(duì)于最終的數(shù)據(jù)分析結(jié)果至關(guān)重要。
第二段:數(shù)據(jù)質(zhì)量問題。
在進(jìn)行數(shù)據(jù)預(yù)處理的過程中,數(shù)據(jù)質(zhì)量問題是非常常見的。比如說,可能會(huì)存在數(shù)據(jù)重復(fù)、格式不統(tǒng)一、空值、異常值等等問題。這些問題將極大影響到數(shù)據(jù)的可靠性、準(zhǔn)確性以及可用性。因此,在進(jìn)行數(shù)據(jù)預(yù)處理時(shí),我們必須對(duì)這些問題進(jìn)行全面的識(shí)別、分析及處理。
第三段:數(shù)據(jù)篩選。
在進(jìn)行數(shù)據(jù)預(yù)處理時(shí),數(shù)據(jù)篩選是必不可少的一步。這一步的目的是選擇出有價(jià)值的數(shù)據(jù),并剔除無用的數(shù)據(jù)。這樣可以減小數(shù)據(jù)集的大小,并且提高數(shù)據(jù)分析的效率。在進(jìn)行數(shù)據(jù)篩選時(shí),需要充分考慮到維度、時(shí)間和規(guī)模等方面因素,以確保所選的數(shù)據(jù)具有合適的代表性。
第四段:數(shù)據(jù)清洗。
數(shù)據(jù)清洗是數(shù)據(jù)預(yù)處理的核心環(huán)節(jié)之一,它可以幫助我們發(fā)現(xiàn)和排除未知數(shù)據(jù),從而讓數(shù)據(jù)集變得更加干凈、可靠和可用。其中,數(shù)據(jù)清洗涉及到很多的技巧和方法,比如數(shù)據(jù)標(biāo)準(zhǔn)化、數(shù)據(jù)歸一化、數(shù)據(jù)變換等等。在進(jìn)行數(shù)據(jù)清洗時(shí),需要根據(jù)具體情況采取不同的方法,以確保數(shù)據(jù)質(zhì)量的穩(wěn)定和準(zhǔn)確性。
第五段:數(shù)據(jù)集成和變換。
數(shù)據(jù)預(yù)處理的最后一步是數(shù)據(jù)集成和變換。數(shù)據(jù)集成是為了將不同來源的數(shù)據(jù)融合為一個(gè)更綜合、完整的數(shù)據(jù)集合。數(shù)據(jù)變換,則是為了更好的展示、分析和挖掘數(shù)據(jù)的潛在價(jià)值。這些數(shù)據(jù)變換需要根據(jù)具體的研究目標(biāo)進(jìn)行設(shè)計(jì)和執(zhí)行,以達(dá)到更好的結(jié)果。
總結(jié):
數(shù)據(jù)預(yù)處理是數(shù)據(jù)分析、數(shù)據(jù)挖掘和機(jī)器學(xué)習(xí)的基礎(chǔ)。在進(jìn)行預(yù)處理時(shí),需要充分考慮到數(shù)據(jù)質(zhì)量問題、數(shù)據(jù)篩選、數(shù)據(jù)清洗以及數(shù)據(jù)集成和變換等方面。只有通過這些環(huán)節(jié)的處理,才能得到滿足精度、可靠性、準(zhǔn)確性和可用性等要求的數(shù)據(jù)集合。
統(tǒng)計(jì)與大數(shù)據(jù)心得體會(huì)精選篇十
近年來,“大數(shù)據(jù)”這個(gè)概念突然火爆起來,成為業(yè)界人士舌尖上滾燙的話題。所謂“大數(shù)據(jù)”,是指數(shù)據(jù)規(guī)模巨大,大到難以用我們傳統(tǒng)信息處理技術(shù)合理擷取、管理、處理、整理?!按髷?shù)據(jù)”概念是“信息”概念的3.0版,主要是對(duì)新媒體語境下信息爆炸情境的生動(dòng)描述。
我們一直有這樣的成見:信息是個(gè)好東西。對(duì)于人類社會(huì)而言,信息應(yīng)該多多益善。這種想法是信息稀缺時(shí)代的產(chǎn)物。由于我們?cè)员M信息貧困和蒙昧的苦頭,于是就拼命追逐信息、占有信息。我們甚至還固執(zhí)地認(rèn)為,占有的信息越多,就越好,越有力量。但是,在“大數(shù)據(jù)’時(shí)代,信息不再稀缺,這種成見就會(huì)受到?jīng)_擊。信息的失速繁衍造成信息的嚴(yán)重過剩。當(dāng)超載的信息逼近人們所能承受的極限值時(shí),就會(huì)成為一種負(fù)擔(dān),我們會(huì)不堪重負(fù)。
信息的超速繁殖源自于信息技術(shù)的升級(jí)換代。以互聯(lián)網(wǎng)為代表的新媒體技術(shù)打開了信息所羅門的瓶子,數(shù)字化的信息失速狂奔,使人類主宰信息的能力遠(yuǎn)遠(yuǎn)落在后面。美國(guó)互聯(lián)網(wǎng)數(shù)據(jù)中心指出,互聯(lián)網(wǎng)上的數(shù)據(jù)每?jī)赡攴环?,目前世界上?0%以上數(shù)據(jù)是近幾年才產(chǎn)生的。,數(shù)字存儲(chǔ)信息占全球數(shù)據(jù)量的四分之一,另外四分之三的信息都存儲(chǔ)在報(bào)紙、膠片、黑膠唱片和盒式磁帶這類媒介上。,只有7%是存儲(chǔ)在報(bào)紙、書籍、圖片等媒介上的模擬數(shù)據(jù),其余都是數(shù)字?jǐn)?shù)據(jù)。到,世界上存儲(chǔ)的數(shù)據(jù)中,數(shù)字?jǐn)?shù)據(jù)超過98%。面對(duì)數(shù)字?jǐn)?shù)據(jù)的大量擴(kuò)容,我們只能望洋興嘆。
“大數(shù)據(jù)”時(shí)代對(duì)人類社會(huì)的影響是全方位的。這種影響究竟有多大,我們現(xiàn)在還無法預(yù)料。哈佛大學(xué)定量社會(huì)學(xué)研究所主任蓋瑞·金則以“一場(chǎng)革命”來形容大數(shù)據(jù)技術(shù)給學(xué)術(shù)、商業(yè)和政府管理等帶來的變化,認(rèn)為“大數(shù)據(jù)”時(shí)代會(huì)引爆一場(chǎng)“哥白尼式革命”:它改變的不僅僅是信息生產(chǎn)力,更是信息生產(chǎn)關(guān)系;不僅是知識(shí)生產(chǎn)和傳播的內(nèi)容,更是其生產(chǎn)與傳播方式。
我們此前的知識(shí)生產(chǎn)是印刷時(shí)代的產(chǎn)物。它是15世紀(jì)古登堡時(shí)代的延續(xù)。印刷革命引爆了人類社會(huì)知識(shí)生產(chǎn)與傳播的“哥白尼式革命”,它使得知識(shí)的生產(chǎn)和傳播突破了精英、貴族的壟斷,開啟了知識(shí)傳播的大眾時(shí)代,同時(shí),也確立了“機(jī)械復(fù)制時(shí)代”的知識(shí)生產(chǎn)與傳播方式。與印刷時(shí)代相比,互聯(lián)網(wǎng)新媒體開啟的“大數(shù)據(jù)”時(shí)代,則是一場(chǎng)更為深廣的革命。在“大數(shù)據(jù)”時(shí)代,信息的生產(chǎn)與傳播往往是呈幾何級(jí)數(shù)式增長(zhǎng)、病毒式傳播。以互聯(lián)網(wǎng)為代表的媒介技術(shù)顛覆了印刷時(shí)代的知識(shí)生產(chǎn)與傳播方式。新媒體遍地開花,打破了傳統(tǒng)知識(shí)主體對(duì)知識(shí)生產(chǎn)與傳播的壟斷。新媒體技術(shù)改寫了靜態(tài)、單向、線性的知識(shí)生產(chǎn)格局,改變了自上而下的知識(shí)傳播模式,將知識(shí)的生產(chǎn)與傳播拋入空前的不確定之中。在“大數(shù)據(jù)”時(shí)代,我們的知識(shí)生產(chǎn)若再固守印刷時(shí)代的知識(shí)生產(chǎn)理念,沿襲此前的知識(shí)生產(chǎn)方式,就會(huì)被遠(yuǎn)遠(yuǎn)地甩在時(shí)代后面。
(節(jié)選自2013.2.22《文匯讀書周報(bào)》,有刪改)。
您可能關(guān)注的文檔
- 最新傳承家風(fēng)家訓(xùn)心得體會(huì)精選(精選17篇)
- 2023年企業(yè)知識(shí)心得體會(huì)怎么寫(模板12篇)
- 2023年學(xué)生烹飪心得體會(huì)(大全16篇)
- 最新學(xué)生烹飪心得體會(huì)怎么寫(優(yōu)質(zhì)11篇)
- 學(xué)生烹飪心得體會(huì)(模板19篇)
- 最新關(guān)于實(shí)習(xí)生心得體會(huì)ppt范本(優(yōu)質(zhì)16篇)
- 寒假托管心得體會(huì)學(xué)生(模板9篇)
- 2023年學(xué)生烹飪心得體會(huì)精選(匯總15篇)
- 學(xué)生烹飪心得體會(huì)(精選10篇)
- 2023年學(xué)生烹飪心得體會(huì)簡(jiǎn)短(優(yōu)秀19篇)
- 探索平面設(shè)計(jì)師工作總結(jié)的重要性(匯總14篇)
- 平面設(shè)計(jì)師工作總結(jié)體會(huì)與收獲大全(20篇)
- 平面設(shè)計(jì)師工作總結(jié)的實(shí)用指南(熱門18篇)
- 免費(fèi)個(gè)人簡(jiǎn)歷電子版模板(優(yōu)秀12篇)
- 個(gè)人簡(jiǎn)歷電子版免費(fèi)模板推薦(通用20篇)
- 免費(fèi)個(gè)人簡(jiǎn)歷電子版制作教程(模板17篇)
- 學(xué)校貧困補(bǔ)助申請(qǐng)書(通用23篇)
- 學(xué)校貧困補(bǔ)助申請(qǐng)書的重要性范文(19篇)
- 學(xué)校貧困補(bǔ)助申請(qǐng)書的核心要點(diǎn)(專業(yè)16篇)
- 學(xué)校貧困補(bǔ)助申請(qǐng)書的申請(qǐng)流程(熱門18篇)
- 法制教育講座心得體會(huì)大全(17篇)
- 教育工作者的超市工作總結(jié)與計(jì)劃(模板18篇)
- 教學(xué)秘書的工作總結(jié)案例(專業(yè)13篇)
- 教師的超市工作總結(jié)與計(jì)劃(精選18篇)
- 單位趣味運(yùn)動(dòng)會(huì)總結(jié)(模板21篇)
- 禮品店創(chuàng)業(yè)計(jì)劃書的重要性(實(shí)用16篇)
- 消防隊(duì)月度工作總結(jié)報(bào)告(熱門18篇)
- 工藝技術(shù)員工作總結(jié)(專業(yè)18篇)
- 大學(xué)學(xué)生會(huì)秘書處工作總結(jié)(模板22篇)
- 醫(yī)院科秘書工作總結(jié)(專業(yè)14篇)
相關(guān)文檔
-
最新
統(tǒng) 計(jì) 員工作職責(zé)與 制度(匯總13篇)19下載數(shù) 226閱讀數(shù) -
統(tǒng) 計(jì) 局個(gè)人工作總結(jié)與 計(jì) 劃(實(shí)用17篇)17下載數(shù) 220閱讀數(shù) -
最新區(qū)
統(tǒng) 計(jì) 局統(tǒng) 計(jì) 工作總結(jié)匯報(bào)(大 全19篇)15下載數(shù) 301閱讀數(shù) -
統(tǒng) 計(jì) 與 大 數(shù)據(jù)心得體會(huì)(模板10篇)32下載數(shù) 247閱讀數(shù) -
統(tǒng) 計(jì) 培訓(xùn)方案(大 全14篇)12下載數(shù) 960閱讀數(shù) -
統(tǒng) 計(jì) 工作總結(jié)(大 全19篇)37下載數(shù) 330閱讀數(shù)