作為一名默默奉獻的教育工作者,通常需要用到教案來輔助教學(xué),借助教案可以讓教學(xué)工作更科學(xué)化。寫教案的時候需要注意什么呢?有哪些格式需要注意呢?下面是小編整理的優(yōu)秀教案范文,歡迎閱讀分享,希望對大家有所幫助。
高三數(shù)學(xué)數(shù)列教案及反思篇一
(1)等比數(shù)列的通項公式是:an=a1×q^(n-1)
若通項公式變形為an=a1/q-q^n(n∈n-),當(dāng)q>0時,則可把an看作自變量n的函數(shù),點(n,an)是曲線y=a1/q-q^x上的一群孤立的點。
(2) 任意兩項am,an的關(guān)系為an=am·q^(n-m)
(3)從等比數(shù)列的定義、通項公式、前n項和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中項:aq·ap=ar^2,ar則為ap,aq等比中項。
(5) 等比求和:sn=a1+a2+a3+.......+an
①當(dāng)q≠1時,sn=a1(1-q^n)/(1-q)或sn=(a1-an×q)÷(1-q)
②當(dāng)q=1時, sn=n×a1(q=1)
記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一個各項均為正數(shù)的等比數(shù)列各項取同底數(shù)數(shù)后構(gòu)成一個等差數(shù)列;反之,以任一個正數(shù)c為底,用一個等差數(shù)列的各項做指數(shù)構(gòu)造冪can,則是等比數(shù)列。在這個意義下,我們說:一個正項等比數(shù)列與等差數(shù)列是“同構(gòu)”的。
高三數(shù)學(xué)數(shù)列教案及反思篇二
等差數(shù)列(一)
教學(xué)目標(biāo): 明確等差數(shù)列的定義,掌握等差數(shù)列的通項公式,會解決知道an,a1,d,n中的三個,求另外一個的問題;培養(yǎng)學(xué)生觀察能力,進一步提高學(xué)生推理、歸納能力,培養(yǎng)學(xué)生的'應(yīng)用意識.
教學(xué)重點: 1.等差數(shù)列的概念的理解與掌握. 2.等差數(shù)列的通項公式的推導(dǎo)及應(yīng)用. 教學(xué)難點: 等差數(shù)列“等差”特點的理解、把握和應(yīng)用. 教學(xué)過程:
ⅰ.復(fù)習(xí)回顧 上兩節(jié)課我們共同學(xué)習(xí)了數(shù)列的定義及給出數(shù)列的兩種方法——通項公式和遞推公式.這兩個公式從不同的角度反映數(shù)列的特點,下面我們看這樣一些例子
ⅱ.講授新課 10,8,6,4,2,…; 21,21,22,22,23,23,24,24,25 2,2,2,2,2,… 首先,請同學(xué)們仔細觀察這些數(shù)列有什么共同的特點?是否可以寫出這些數(shù)列的通項公式?(引導(dǎo)學(xué)生積極思考,努力尋求各數(shù)列通項公式,并找出其共同特點) 它們的共同特點是:從第2項起,每一項與它的前一項的“差”都等于同一個常數(shù). 也就是說,這些數(shù)列均具有相鄰兩項之差“相等”的特點.具有這種特點的數(shù)列,我們把它叫做等差數(shù)列.
1.定義 等差數(shù)列:一般地,如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d表示.
2.等差數(shù)列的通項公式 等差數(shù)列定義是由一數(shù)列相鄰兩項之間關(guān)系而得.若一等差數(shù)列{an}的首項是a1,公差是d,則據(jù)其定義可得: (n-1)個等式 若將這n-1個等式左右兩邊分別相加,則可得:an-a1=(n-1)d 即:an=a1+(n-1)d 當(dāng)n=1時,等式兩邊均為a1,即上述等式均成立,則對于一切n∈n-時上述公式都成立,所以它可作為數(shù)列{an}的通項公式. 看來,若已知一數(shù)列為等差數(shù)列,則只要知其首項a1和公差d,便可求得其通項. 由通項公式可類推得:am=a1+(m-1)d,即:a1=am-(m-1)d,則: an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d. 如:a5=a4+d=a3+2d=a2+3d=a1+4d
請同學(xué)們來思考這樣一個問題. 如果在a與b中間插入一個數(shù)a,使a、a、b成等差數(shù)列,那么a應(yīng)滿足什么條件? 由等差數(shù)列定義及a、a、b成等差數(shù)列可得:a-a=b-a,即:a=. 反之,若a=,則2a=a+b,a-a=b-a,即a、a、b成等差數(shù)列. 總之,a= a,a,b成等差數(shù)列. 如果a、a、b成等差數(shù)列,那么a叫做a與b的等差中項. 例題講解 [
例1]在等差數(shù)列{an}中,已知a5=10,a15=25,求a25.
思路一:根據(jù)等差數(shù)列的已知兩項,可求出a1和d,然后可得出該數(shù)列的通項公式,便可求出a25.
思路二:若注意到已知項為a5與a15,所求項為a25,則可直接利用關(guān)系式an=am+(n-m)d.這樣可簡化運算. 思路三:若注意到在等差數(shù)列{an}中,a5,a15,a25也成等差數(shù)列,則利用等差中項關(guān)系式,便可直接求出a25的值.
[例2](1)求等差數(shù)列8,5,2…的第20項. 分析:由給出的三項先找到首項a1,求出公差d,寫出通項公式,然后求出所要項
答案:這個數(shù)列的第20項為-49. (2)-401是不是等差數(shù)列-5,-9,-13…的項?如果是,是第幾項? 分析:要想判斷-401是否為這數(shù)列的一項,關(guān)鍵要求出通項公式,看是否存在正整數(shù)n,可使得an=-401. ∴-401是這個數(shù)列的第100項.
ⅲ.課堂練習(xí)
1.(1)求等差數(shù)列3,7,11,……的'第4項與第10項.
(2)求等差數(shù)列10,8,6,……的第20項. (3)100是不是等差數(shù)列2,9,16,……的項?如果是,是第幾項?如果不是,說明理由. 2.在等差數(shù)列{an}中,
(1)已知a4=10,a7=19,求a1與d;
(2)已知a3=9,a9=3,求a12.
ⅳ.課時小結(jié) 通過本節(jié)學(xué)習(xí),首先要理解與掌握等差數(shù)列的定義及數(shù)學(xué)表達式:an-an-1=d(n≥2).其次,要會推導(dǎo)等差數(shù)列的通項公式:an=a1+(n-1)d(n≥1),并掌握其基本應(yīng)用.最后,還要注意一重要關(guān)系式:an=am+(n-m)d的理解與應(yīng)用以及等差中項。
ⅴ.課后作業(yè) 課本p39習(xí)題 1,2,3,4
高三數(shù)學(xué)數(shù)列教案及反思篇三
數(shù)列
§3.1.1數(shù)列、數(shù)列的通項公式 目的:要求學(xué)生理解數(shù)列的概念及其幾何表示,理解什么叫數(shù)列的通項公式,給出一些數(shù)列能夠?qū)懗銎渫椆?,已知通項公式能夠求?shù)列的項。
重點:1數(shù)列的概念。按一定次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個數(shù)叫做數(shù)列的項,數(shù)列的第n項an叫做數(shù)列的通項(或一般項)。由數(shù)列定義知:數(shù)列中的數(shù)是有序的,數(shù)列中的數(shù)可以重復(fù)出現(xiàn),這與數(shù)集中的數(shù)的無序性、互異性是不同的。
2.數(shù)列的通項公式,如果數(shù)列{an}的通項an可以用一個關(guān)于n的公式來表示,這個公式就叫做數(shù)列的通項公式。從映射、函數(shù)的觀點看,數(shù)列可以看成是定義域為正整數(shù)集n-(或?qū)挼挠邢拮蛹?的函數(shù)。當(dāng)自變量順次從小到大依次取值時對自學(xué)成才的一列函數(shù)值,而數(shù)列的通項公式則是相應(yīng)的解析式。由于數(shù)列的項是函數(shù)值,序號是自變量,所以以序號為橫坐標(biāo),相應(yīng)的項為縱坐標(biāo)畫出的圖像是一些孤立的點。難點:根據(jù)數(shù)列前幾項的特點,以現(xiàn)規(guī)律后寫出數(shù)列的通項公式。給出數(shù)列的前若干項求數(shù)列的通項公式,一般比較困難,且有的數(shù)列不一定有通項公式,如果有通項公式也不一定唯一。給出數(shù)列的前若干項要確定其一個通項公式,解決這個問題的關(guān)鍵是找出已知的每一項與其序號之間的對應(yīng)關(guān)系,然后抽象成一般形式。過程:一、從實例引入(p110)1. 堆放的鋼管 4,5,6,7,8,9,102. 正整數(shù)的倒數(shù)
3. 4. -1的正整數(shù)次冪:-1,1,-1,1,…
5. 無窮多個數(shù)排成一列數(shù):1,1,1,1,…
二、提出課題:數(shù)列
1. 數(shù)列的定義:按一定次序排列的一列數(shù)(數(shù)列的有序性)
2. 名稱:項,序號,一般公式 ,表示法
3. 通項公式: 與 之間的函數(shù)關(guān)系式如 數(shù)列1: 數(shù)列2: 數(shù)列4:
4. 分類:遞增數(shù)列、遞減數(shù)列;常數(shù)列;擺動數(shù)列; 有窮數(shù)列、無窮數(shù)列。
5. 實質(zhì):從映射、函數(shù)的觀點看,數(shù)列可以看作是一個定義域為正整數(shù)集 n-(或它的有限子集{1,2,…,n})的函數(shù),當(dāng)自變量從小到大依次取值時對應(yīng)的一列函數(shù)值,通項公式即相應(yīng)的函數(shù)解析式。
6. 用圖象表示:— 是一群孤立的點 例一 (p111 例一 略)
三、關(guān)于數(shù)列的通項公式1. 不是每一個數(shù)列都能寫出其通項公式 (如數(shù)列3)
2. 數(shù)列的通項公式不唯一 如: 數(shù)列4可寫成 和
3. 已知通項公式可寫出數(shù)列的任一項,因此通項公式十分重要例二 (p111 例二)略
四、補充例題:寫出下面數(shù)列的一個通項公式,使它的`前 項分別是下列各數(shù):1.1,0,1,0. 2. , , , , 3.7,77,777,7777 4.-1,7,-13,19,-25,31 5. , , ,
五、小結(jié):1.數(shù)列的有關(guān)概念2.觀察法求數(shù)列的通項公式
六、作業(yè) : 練習(xí) p112 習(xí)題 3.1(p114)1、2
七、練習(xí):1.觀察下面數(shù)列的特點,用適當(dāng)?shù)臄?shù)填空,關(guān)寫出每個數(shù)列的一個通項公式;(1) , , ,( ), , …(2) ,( ), , , …
2.寫出下面數(shù)列的一個通項公式,使它的前4項分別是下列各數(shù):(1)1、 、 、 ; (2) 、 、 、 ; (3) 、 、 、 ; (4) 、 、 、 。
3.求數(shù)列1,2,2,4,3,8,4,16,5,…的一個通項公式
4.已知數(shù)列an的前4項為0, ,0, ,則下列各式 ①an= ②an= ③an= 其中可作為數(shù)列{an}通項公式的是 a ① b ①② c ②③ d ①②③
5.已知數(shù)列1, , , ,3, …, ,…,則 是這個數(shù)列的( ) a. 第10項 b.第11項 c.第12項 d.第21項
6.在數(shù)列{an}中a1=2,a17=66,通項公式或序號n的一次函數(shù),求通項公式。
7.設(shè)函數(shù) ( ),數(shù)列{an}滿足 (1)求數(shù)列{an}的通項公式;(2)判斷數(shù)列{an}的單調(diào)性。
8.在數(shù)列{an}中,an=(1)求證:數(shù)列{an}先遞增后遞減;(2)求數(shù)列{an}的最大項。 答案:1. (1) ,an= (2) ,an= 2.(1)an= (2)an= (3)an= (4)an= = 或an=這里借助了數(shù)列1,0,1,0,1,0…的通項公式an=。4.d 5.b 6. an=4n-2
7.(1)an= (2) <1又an<0, ∴ 是遞增數(shù)列
高三數(shù)學(xué)數(shù)列教案及反思篇四
證明數(shù)列是等比 數(shù)列
an=(2a-6b)n+6b
當(dāng)此數(shù)列為等比數(shù)列時,顯然是常數(shù)列,即2a-6b=0
這個是顯然的東西,但是我不懂怎么證明
常數(shù)列嗎.所以任何一個k和m都應(yīng)該有ak=amak=(2a-6b)k+6b am=(2a-6b)m+6bak-am=(2a-6b)(k-m)因為ak-am恒為0k m 任意所以一定有2a-6b=0 即a=3b
補充回答: 題目條件看錯,再證明 當(dāng)此數(shù)列為等比數(shù)列時
2a-6b=0
因為等比a3:a2=a2:a1
即 (6a-12b)-2a=(4a-6b)^2
a^2-6ab+9b^2=0
即(a-3b)^2=0
所以肯定有 a=3b成立
2
數(shù)列an前n項和為sn 已知a1=1 a(n+1)=(n+2)/n乘以sn(n=1,2,3......) 證明
(1)(sn/n)是等比數(shù)列
(2) s(n+1)=4an
1、a(n+1)=(n+2)sn/n=s(n+1)-sn
即ns(n+1)-nsn=(n+2)sn
ns(n+1)=(n+2)sn+nsn
ns(n+1)=(2n+2)sn
s(n+1)/(n+1)=2sn/n
即s[(n+1)/(n+1)]/[sn/n]=2
s1/1=a1=1
所以sn/n是以2為公比1為首項的等比數(shù)列
2、由1有sn/n是以2為公比1為首項的等比數(shù)列
所以sn/n的通項公式是sn/n=1-2^(n-1)
即sn=n2^(n-1)
那么s(n+1)=(n+1)2^n,s(n-1)=(n-1)2^(n-2)
an=sn-s(n-1)
=n2^(n-1)-(n-1)2^(n-2)
=n-2-2^(n-2)-(n-1)2^(n-2)
=[2n-(n-1)]-2^(n-2)
=(n+1)2^(n-2)
=(n+1)-2^n/2^2
=(n+1)2^n/4
=s(n+1)/4
所以有s(n+1)=4an
a(n)-a(n-1)=2(n-1)
上n-1個式子相加得到:
an-a1=2+4+6+8+.....2(n-1)
右邊是等差數(shù)列,且和=[2+2(n-1)](n-1)/2=n(n-1)
所以:
an-2=n^2-n
an=n^2-n+2
4、
已知數(shù)列{3-2的n此方},求證是等比數(shù)列
根據(jù)題意,數(shù)列是3-2^n(^n表示肩膀上的方次),n=1,2,3,...
為了驗證它是等比數(shù)列只需要比較任何一項和它相鄰項的比值是一個不依賴項次的`固定比值就可以了.
所以第n項和第n+1項分別是3-2^n和3-2^(n+1),相比之后有:
[3-2^(n+1)]/(3-2^n)=2
因為比值是2,不依賴n的選擇,所以得到結(jié)論.
5
數(shù)列an前n項和為sn 已知a1=1 a(n+1)=(n+2)/n乘以sn(n=1,2,3......) 證明
(1)(sn/n)是等比數(shù)列
(2) s(n+1)=4an
1、a(n+1)=(n+2)sn/n=s(n+1)-sn
即ns(n+1)-nsn=(n+2)sn
ns(n+1)=(n+2)sn+nsn
ns(n+1)=(2n+2)sn
s(n+1)/(n+1)=2sn/n
即s[(n+1)/(n+1)]/[sn/n]=2
s1/1=a1=1
所以sn/n是以2為公比1為首項的等比數(shù)列
2、由1有sn/n是以2為公比1為首項的等比數(shù)列
所以sn/n的通項公式是sn/n=1-2^(n-1)
即sn=n2^(n-1)
那么s(n+1)=(n+1)2^n,s(n-1)=(n-1)2^(n-2)
an=sn-s(n-1)
高三數(shù)學(xué)數(shù)列教案及反思篇五
一、教材分析
1、教材的地位和作用:
數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進一步深入和拓廣。同時等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對比的依據(jù)。
2、教學(xué)目標(biāo)
根據(jù)教學(xué)大綱的要求和學(xué)生的實際水平,確定了本次課的教學(xué)目標(biāo)
a在知識上:理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項公式的推導(dǎo)過程及思想;初步引入“數(shù)學(xué)建?!钡乃枷敕椒ú⒛苓\用。
b在能力上:培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力;在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學(xué)生的知識、方法遷移能力;通過階梯性練習(xí),提高學(xué)生分析問題和解決問題的能力。
c在情感上:通過對等差數(shù)列的研究,培養(yǎng)學(xué)生主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細心觀察、認真分析、善于總結(jié)的良好思維習(xí)慣。
3、教學(xué)重點和難點
根據(jù)教學(xué)大綱的要求我確定本節(jié)課的教學(xué)重點為:
①等差數(shù)列的概念。
②等差數(shù)列的通項公式的.推導(dǎo)過程及應(yīng)用。
由于學(xué)生第一次接觸不完全歸納法,對此并不熟悉因此用不完全歸納法推導(dǎo)等差數(shù)列的同項公式是這節(jié)課的一個難點。同時,學(xué)生對“數(shù)學(xué)建?!钡乃枷敕椒ㄝ^為陌生,因此用數(shù)學(xué)思想解決實際問題是本節(jié)課的另一個難點。
二、學(xué)情教法分析:
對于三中的高一學(xué)生,知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了教強的抽象思維能力和演繹推理能力,所以我在授課時注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。
針對高中生這一思維特點和心理特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過問題激發(fā)學(xué)生求知欲,使學(xué)生主動參與數(shù)學(xué)實踐活動,以獨立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題。
三、學(xué)法指導(dǎo):
在引導(dǎo)分析時,留出學(xué)生的思考空間,讓學(xué)生去聯(lián)想、探索,同時鼓勵學(xué)生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。
四、教學(xué)程序
本節(jié)課的教學(xué)過程由(一)復(fù)習(xí)引入(二)新課探究(三)應(yīng)用舉例(四)反饋練習(xí)(五)歸納小結(jié)(六)布置作業(yè),六個教學(xué)環(huán)節(jié)構(gòu)成。
(一)復(fù)習(xí)引入:
1.從函數(shù)觀點看,數(shù)列可看作是定義域為__________對應(yīng)的一列函數(shù)值,從而數(shù)列的通項公式也就是相應(yīng)函數(shù)的______。(n﹡;解析式)
通過練習(xí)1復(fù)習(xí)上節(jié)內(nèi)容,為本節(jié)課用函數(shù)思想研究數(shù)列問題作準(zhǔn)備。
2.小明目前會100個單詞,他她打算從今天起不再背單詞了,結(jié)果不知不覺地每天忘掉2個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為:100,98,96,94,92 ①
3. 小芳只會5個單詞,他決定從今天起每天背記10個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞增為5,10,15,20,25 ②
通過練習(xí)2和3引出兩個具體的等差數(shù)列,初步認識等差數(shù)列的特征,為后面的概念學(xué)習(xí)建立基礎(chǔ),為學(xué)習(xí)新知識創(chuàng)設(shè)問題情站境,激發(fā)學(xué)生的求知欲。由學(xué)生觀察兩個數(shù)列特點,引出等差數(shù)列的概念,對問題的總結(jié)又培養(yǎng)學(xué)生由具體到抽象、由特殊到一般的認知能力。
(二) 新課探究
1、由引入自然的給出等差數(shù)列的概念:
如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列,
這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強調(diào):
① “從第二項起”滿足條件;
②公差d一定是由后項減前項所得;
③每一項與它的前一項的差必須是同一個常數(shù)(強調(diào)“同一個常數(shù)” );
在理解概念的基礎(chǔ)上,由學(xué)生將等差數(shù)列的文字語言轉(zhuǎn)化為數(shù)學(xué)語言,歸納出數(shù)學(xué)表達式:
an+1-an=d (n≥1)同時為了配合概念的理解,我找了5組數(shù)列,由學(xué)生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。
1. 9 ,8,7,6,5,4,……;√ d=-1
2. 0.70,0.71,0.72,0.73,0.74……;√ d=0.01
3. 0,0,0,0,0,0,…….; √ d=0
4. 1,2,3,2,3,4,……;×
5. 1,0,1,0,1,……×
其中第一個數(shù)列公差<0, 第二個數(shù)列公差>0,第三個數(shù)列公差=0
由此強調(diào):公差可以是正數(shù)、負數(shù),也可以是0
2、第二個重點部分為等差數(shù)列的通項公式
在歸納等差數(shù)列通項公式中,我采用討論式的教學(xué)方法,
資料共享平臺
《高中數(shù)學(xué)說課稿:等差數(shù)列》(https://)。給出等差數(shù)列的首項,公差d,由學(xué)生研究分組討論a4的通項公式。通過總結(jié)a4的通項公式由學(xué)生猜想a40的通項公式,進而歸納an的通項公式。整個過程由學(xué)生完成,通過互相討論的方式既培養(yǎng)了學(xué)生的協(xié)作意識又化解了教學(xué)難點。
若一等差數(shù)列{an }的首項是a1,公差是d,則據(jù)其定義可得:
a2 - a1 =d 即: a2 =a1 +d
a3 – a2 =d 即: a3 =a2 +d = a1 +2d
a4 – a3 =d 即: a4 =a3 +d = a1 +3d
……
猜想: a40 = a1 +39d,進而歸納出等差數(shù)列的通項公式:
an=a1+(n-1)d
此時指出:這種求通項公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴密,為了培養(yǎng)學(xué)生嚴謹?shù)膶W(xué)習(xí)態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項公式的辦法------迭加法:
a2 – a1 =d
a3 – a2 =d
a4 – a3 =d
……
an – an-1=d
將這(n-1)個等式左右兩邊分別相加,就可以得到 an– a1= (n-1) d即 an= a1+(n-1) d (1)
當(dāng)n=1時,(1)也成立,
所以對一切n∈n﹡,上面的公式都成立
因此它就是等差數(shù)列{an}的通項公式。
在迭加法的證明過程中,我采用啟發(fā)式教學(xué)方法。
利用等差數(shù)列概念啟發(fā)學(xué)生寫出n-1個等式。
對照已歸納出的通項公式啟發(fā)學(xué)生想出將n-1個等式相加。證出通項公式。
在這里通過該知識點引入迭加法這一數(shù)學(xué)思想,逐步達到“注重方法,凸現(xiàn)思想” 的教學(xué)要求
接著舉例說明:若一個等差數(shù)列{an}的首項是1,公差是2,得出這個數(shù)列的通項公式是:an=1+(n-1)×2 ,
即an=2n-1 以此來鞏固等差數(shù)列通項公式運用
同時要求畫出該數(shù)列圖象,由此說明等差數(shù)列是關(guān)于正整數(shù)n一次函數(shù),其圖像是均勻排開的無窮多個孤立點。用函數(shù)的思想來研究數(shù)列,使數(shù)列的性質(zhì)顯現(xiàn)得更加清楚。
(三)應(yīng)用舉例
這一環(huán)節(jié)是使學(xué)生通過例題和練習(xí),增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向?qū)W生表明:要用運動變化的觀點看等差數(shù)列通項公式中的a1、d、n、an這4個量之間的關(guān)系。當(dāng)其中的部分量已知時,可根據(jù)該公式求出另一部分量。
例1 (1)求等差數(shù)列8,5,2,…的第20項;第30項;第40項
(2)-401是不是等差數(shù)列-5,-9,-13,…的項?如果是,是第幾項?
在第一問中我添加了計算第30項和第40項以加強鞏固等差數(shù)列通項公式;第二問實際上是求正整數(shù)解的問題,而關(guān)鍵是求出數(shù)列的通項公式an.
例2 在等差數(shù)列{an}中,已知a5=10,a12 =31,求首項a1與公差d。
在前面例1的基礎(chǔ)上將例2當(dāng)作練習(xí)作為對通項公式的鞏固
例3 是一個實際建模問題
建造房屋時要設(shè)計樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5.8米,若樓梯設(shè)計為等高的16級臺階,問每級臺階高為多少米?
這道題我采用啟發(fā)式和討論式相結(jié)合的教學(xué)方法。啟發(fā)學(xué)生注意每級臺階“等高”使學(xué)生想到每級臺階離地面的高度構(gòu)成等差數(shù)列,引導(dǎo)學(xué)生將該實際問題轉(zhuǎn)化為數(shù)學(xué)模型------等差數(shù)列:(學(xué)生討論分析,分別演板,教師評析問題。問題可能出現(xiàn)在:項數(shù)學(xué)生認為是16項,應(yīng)明確a1為第2層的樓底離地面的高度,a2表示第一級臺階離地面的高度而第16級臺階離地面高度為a17,可用課件展示實際樓梯圖以化解難點)。
設(shè)置此題的目的:1.加強同學(xué)們對應(yīng)用題的綜合分析能力,2.通過數(shù)學(xué)實際問題引出等差數(shù)列問題,激發(fā)了學(xué)生的興趣;3.再者通過數(shù)學(xué)實例展示了“從實際問題出發(fā)經(jīng)抽象概括建立數(shù)學(xué)模型,最后還原說明實際問題的“數(shù)學(xué)建?!钡臄?shù)學(xué)思想方法
(四)反饋練習(xí)
1、小節(jié)后的練習(xí)中的第1題和第2題(要求學(xué)生在規(guī)定時間內(nèi)完成)。目的:使學(xué)生熟悉通項公式,對學(xué)生進行基本技能訓(xùn)練。
2、書上例3)梯子的最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數(shù)列。計算中間各級的寬度。
目的:對學(xué)生加強建模思想訓(xùn)練。
3、若數(shù)例{an} 是等差數(shù)列,若 bn = k an ,(k為常數(shù))試證明:數(shù)列{bn}是等差數(shù)列
此題是對學(xué)生進行數(shù)列問題提高訓(xùn)練,學(xué)習(xí)如何用定義證明數(shù)列問題同時強化了等差數(shù)列的概念。
(五)歸納小結(jié)(由學(xué)生總結(jié)這節(jié)課的收獲)
1.等差數(shù)列的概念及數(shù)學(xué)表達式.
強調(diào)關(guān)鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)
2.等差數(shù)列的通項公式 an= a1+(n-1) d會知三求一
3.用“數(shù)學(xué)建?!彼枷敕椒ń鉀Q實際問題
(六)布置作業(yè)
必做題:課本p114 習(xí)題3.2第2,6 題
選做題:已知等差數(shù)列{an}的首項a1=-24,從第10項開始為正數(shù),求公差d的取值范圍。
(目的:通過分層作業(yè),提高同學(xué)們的求知欲和滿足不同層次的學(xué)生需求)
五、板書設(shè)計
在板書中突出本節(jié)重點,將強調(diào)的地方如定義中,“從第二項起”及“同一常數(shù)”等幾個字用紅色粉筆標(biāo)注,同時給學(xué)生留有作題的地方,整個板書充分體現(xiàn)了精講多練的教學(xué)方法。
您可能關(guān)注的文檔
- 2023年二年級中等生評語簡短(通用9篇)
- 2023年酒店員工辭職申請書簡短十(優(yōu)秀15篇)
- 個人自我介紹幽默(匯總14篇)
- 最新殘疾人重度申請書(優(yōu)質(zhì)11篇)
- 2023年殘疾人重度申請書(優(yōu)質(zhì)20篇)
- 最新學(xué)生會生活部工作總結(jié)300字實用(精選15篇)
- 2023年勞動節(jié)隨筆400字(優(yōu)質(zhì)17篇)
- 電氣線路安全管理制度(通用16篇)
- 餐廳服務(wù)員工作總結(jié)600字(大全20篇)
- 人教版小學(xué)語文全冊教案(通用8篇)
- 探索平面設(shè)計師工作總結(jié)的重要性(匯總14篇)
- 平面設(shè)計師工作總結(jié)體會與收獲大全(20篇)
- 平面設(shè)計師工作總結(jié)的實用指南(熱門18篇)
- 免費個人簡歷電子版模板(優(yōu)秀12篇)
- 個人簡歷電子版免費模板推薦(通用20篇)
- 免費個人簡歷電子版制作教程(模板17篇)
- 學(xué)校貧困補助申請書(通用23篇)
- 學(xué)校貧困補助申請書的重要性范文(19篇)
- 學(xué)校貧困補助申請書的核心要點(專業(yè)16篇)
- 學(xué)校貧困補助申請書的申請流程(熱門18篇)
- 法制教育講座心得體會大全(17篇)
- 教育工作者的超市工作總結(jié)與計劃(模板18篇)
- 教學(xué)秘書的工作總結(jié)案例(專業(yè)13篇)
- 教師的超市工作總結(jié)與計劃(精選18篇)
- 單位趣味運動會總結(jié)(模板21篇)
- 禮品店創(chuàng)業(yè)計劃書的重要性(實用16篇)
- 消防隊月度工作總結(jié)報告(熱門18篇)
- 工藝技術(shù)員工作總結(jié)(專業(yè)18篇)
- 大學(xué)學(xué)生會秘書處工作總結(jié)(模板22篇)
- 醫(yī)院科秘書工作總結(jié)(專業(yè)14篇)