手機閱讀

高中數(shù)學說課稿(優(yōu)質(zhì)9篇)

格式:DOC 上傳日期:2023-11-11 20:55:23 頁碼:7
高中數(shù)學說課稿(優(yōu)質(zhì)9篇)
2023-11-11 20:55:23    小編:zdfb

總結是一種對過去的回顧,也是對未來的規(guī)劃。在寫總結時,我們應該注重突出自己的優(yōu)點和亮點,同時也要坦誠面對不足和問題。大家可以參考下面的總結范文,了解一下如何寫好一篇總結。

高中數(shù)學說課稿篇一

知識與技能目標:準確理解橢圓的定義,掌握橢圓的標準方程及其推導。

過程與方法目標:通過引導學生親自動手嘗試畫圖、發(fā)現(xiàn)橢圓的形成過程進而歸納出橢圓的定義,培養(yǎng)學生觀察、辨析、歸納問題的能力。

情感、態(tài)度與價值觀目標:通過經(jīng)歷橢圓方程的化簡,增強學生戰(zhàn)勝困難的意志品質(zhì)并體會數(shù)學的簡潔美、對稱美,通過討論橢圓方程推導的等價性養(yǎng)成學生扎實嚴謹?shù)目茖W態(tài)度。

重點是橢圓的定義及標準方程,難點是推導橢圓的標準方程。

教學環(huán)節(jié)。

教學內(nèi)容和形式。

設計意圖。

復習。

提問:

(1)圓的定義是什么?圓的標準方程的形式怎樣?

(2)如何推導圓的標準方程呢?

激活學生已有的認知結構,為本課推導橢圓標準方程提供了方法與策略。

(略)。

操作-----交流-----歸納-----多媒體演示-----聯(lián)系生活。

在動手過程中,培養(yǎng)學生觀察、辨析、歸納問題的能力。

在變化的過程中發(fā)現(xiàn)圓與橢圓的聯(lián)系;建立起用聯(lián)系與發(fā)展的'觀點看問題;為下一節(jié)深入研究方程系數(shù)的幾何意義埋下伏筆。

教學環(huán)節(jié)。

注:1、平面內(nèi)。

2、若,則點p的軌跡為橢圓。

若,則點p的軌跡為線段。

若,則點p的軌跡不存在。

情境1.生活中,你見過哪些類似橢圓的圖形或物體?

情境2.讓學生觀察傾斜的圓柱形水杯的水面邊界線,并從中抽象出數(shù)學模型.(教師用多媒體演示)。

情境3.觀看天體運行的軌道圖片。

準確理解橢圓的定義。

滲透數(shù)學源于生活,圓錐曲線在生產(chǎn)和技術中有著廣泛的應用。

例:已知點、為橢圓的兩個焦點,p為橢圓上的任意一點,且,其中,求橢圓的方程。

點撥-----板演-----點評。

(1)建系設點。

(2)寫出點的集合。

(3)寫出代數(shù)方程。

(4)化簡方程:

1請一位基礎較好,書寫規(guī)范的同學板演。

(5)證明:討論推導的等價性。

掌握橢圓標準方程及推導方法。

培養(yǎng)學生戰(zhàn)勝困難的意志品質(zhì)并感受數(shù)學的簡潔美、對稱美。

養(yǎng)成學生扎實嚴謹?shù)目茖W態(tài)度。

應用。

舉例。

教學環(huán)節(jié)。

例1.(1)橢圓的焦點坐標為:

(2)橢圓的焦距為4,則m的值為:

活動過程:思考-----解答-----點評。

活動過程:思考-----解答-----點評。

變式1已知橢圓焦點的坐標分別是(-4,0)(4,0),且經(jīng)過點,求橢圓的標準方程。

求橢圓的標準方程。

思考-----解答-----點評。

認清橢圓兩種標準方程形式上的特征。

提問:本節(jié)課學習的主要知識是什么?你學會了哪些數(shù)學思想與方法?

活動過程:教師提問-----學生小結-----師生補充完善。

讓學生回顧本節(jié)所學知識與方法,以逐步提高學生自我獲取知識的能力。

作業(yè):教材第95頁,練習2、4,第96頁習題8-1,1、2、3、

分層次布置作業(yè),幫助學生鞏固所學知識;為學有余力的學生留有進一步探索、發(fā)展的空間。

8.1橢圓及其標準方程。

本節(jié)課的設計力圖貫徹"以人的發(fā)展為本"的教育理念,體現(xiàn)"教師為主導,學生為主體"的現(xiàn)代教學思想。在對橢圓定義的講授中,遵循從生動直觀到抽象概括的教學原則和教學途徑,通過引導學生親自動手嘗試畫圖、發(fā)現(xiàn)橢圓的形成過程進而歸納出橢圓的定義,培養(yǎng)學生觀察、辨析、歸納問題的能力;讓橢圓生動靈活地呈現(xiàn)在學生面前,更有助于學生理解橢圓的內(nèi)涵和外延。對本課另一難點標準方程推導的講授中,在關鍵處設疑,以疑導思,讓學生先從目的、再從方法上考慮,引導學生對比、分析,師生共同完成。通過經(jīng)歷橢圓方程的化簡,增強了學生戰(zhàn)勝困難的意志品質(zhì)并體會數(shù)學的簡潔美、對稱美.通過討論橢圓方程推導的等價性養(yǎng)成學生扎實嚴謹?shù)目茖W態(tài)度。設計的例題及變式練習,充分利用新知識解決問題,使所學內(nèi)容得以鞏固。變式(2)的設計讓學生站在方程的角度認清橢圓兩種標準方程形式上的特征,將學生的思維提升到了一個新的高度。課后分層次布置作業(yè),幫助學生鞏固所學知識;課后探索更為學有余力的學生留有進一步探索、發(fā)展的空間。在教學中借助多媒體生動、直觀、形象的特點來突出教學重點。自始至終很好地調(diào)動學生的積極性,挖掘他們的內(nèi)在潛能,提高學生的綜合素質(zhì)。

高中數(shù)學說課稿篇二

新課標指出,高中數(shù)學課程的教學要能提高學生的“四基、四能”,根據(jù)這一課程目標,本節(jié)課我將從教材分析、教學目標、教學過程等幾個方面來展開我的說課。

本節(jié)課選自人教a版高中數(shù)學必修3第三章。本節(jié)課的內(nèi)容是在古典概型基礎上的進一步發(fā)展,是等可能事件的概念從有限向無限的延伸。通過本節(jié)課的學習,學生能進一步體會實驗結果的隨機性與規(guī)律性,并體會到對事物的看法不應該持絕對化的觀點。

高中生智力發(fā)育已趨于成熟,對于未知事物有著很強的探究欲望,且此前古典概型的學習為本節(jié)課打下了良好的基礎。但基本事件有無數(shù)多個的發(fā)現(xiàn)以及此種情況下概率該如何計算,學生并不容易想到。因此我會從具體的生活、實踐問題入手,組織學生開展活動,在觀察、思考中抽象、概括本節(jié)課的要點。

結合以上分析,我制定本節(jié)課教學目標如下:

(一)知識與技能。

初步體會幾何概型的意義,掌握幾何概型的概率計算公式,并能進行簡單應用。

(二)過程與方法。

在通過幾何概型特點概括出幾何概型概率計算公式的過程中,進一步發(fā)展合情推理能力,學會運用數(shù)形結合的思想解決概率計算問題。

(三)情感、態(tài)度與價值觀。

通過貼近生活的素材,激發(fā)學習數(shù)學的興趣,體會用科學的態(tài)度、辯證的思想去觀察、分析、研究客觀世界。

同時,本節(jié)課教學重點為:幾何概型的意義及概率計算公式。教學難點為:幾何概型概率計算公式的推導。

教學的一切活動都必須以強調(diào)學生的主動性、積極性為出發(fā)點,根據(jù)這一教學理念,本節(jié)課我將采用講授法、自主探究法、練習法等教學方法。

下面說說我的教學過程。

(一)引入新課。

首先我會帶領學生復習確定隨機事件發(fā)生的概率的兩種方法,一是通過頻率估算概率,二是用古典概型的概率公式來計算事件發(fā)生的概率。但古典概型是基于試驗的所有結果是有限個,當試驗的所有可能結果有無窮多個時,無法利用之前的方法進行計算,進而進入本節(jié)課的學習。

利用復習導入,一來可以鞏固之前所學,二來將等可能事件從有限拓展到無限,引發(fā)學生的認知沖突,體現(xiàn)出學習本節(jié)課的必要性。

(二)講解新知。

接下來是新知講解。為了讓學生初步感知幾何概型的基本特點,我會舉例:

(1)一個人到單位的時間可能是8:00~9:00之間任一時刻。

(2)往一方格中投一個石子。并請學生說說此人到達單位的時間點以及石子落在方格的哪個位置,會不會在某一時間點到達或落在某一位置的概率比較大。學生結合生活經(jīng)驗能夠發(fā)現(xiàn),此時基本事件有無數(shù)多個,且基本事件發(fā)生是等可能的。

僅僅知道特點還是不夠的,還要知道相應概率的求法。為了讓學生有更直觀的感知,我會出示具體問題:如圖,甲、乙兩人玩轉盤游戲,規(guī)定當指針指向b區(qū)域時,甲獲勝,否則乙獲勝。請學生思考在兩種情況下甲獲勝的概率分別是多少。

高中數(shù)學說課稿篇三

導數(shù)是微積分的核心概念之一,它為研究函數(shù)提供了有效的方法.在前面幾節(jié)課里學生對導數(shù)的概念已經(jīng)有了充分的認識,本節(jié)課教材從形的角度即割線入手,用形象直觀的“逼近”方法定義了切線,獲得導數(shù)的幾何意義,更有利于學生理解導數(shù)概念的本質(zhì)內(nèi)涵.這節(jié)課可以利用幾何畫板進行動畫演示,讓學生通過觀察、思考、發(fā)現(xiàn)、思維、運用形成完整概念.通過本節(jié)的學習,可以幫助學生更好的體會導數(shù)是研究函數(shù)的單調(diào)性、變化快慢等性質(zhì)最有效的工具,是本章的關鍵內(nèi)容。

2、教學的重點、難點、關鍵。

教學重點:導數(shù)的幾何意義、切線方程的求法以及“數(shù)形結合,逼近”的思想方法。

教學難點:理解導數(shù)的幾何意義的本質(zhì)內(nèi)涵。

1)從割線到切線的過程中采用的逼近方法;。

2)理解導數(shù)的概念,將多方面的意義聯(lián)系起來,例如,導數(shù)反映了函數(shù)f(x)在點x附近的變化快慢,導數(shù)是曲線上某點切線的斜率,等等.

根據(jù)新課程標準的`要求、學生的認知水平,確定教學目標如下:

1、知識與技能:。

通過實驗探求理解導數(shù)的幾何意義,理解曲線在一點的切線的概念,會求簡單函數(shù)在某點的切線方程。

過程與方法:

通過逼近、數(shù)形結合思想的具體運用,使學生達到思維方式的遷移,了解科學的思維方法。

3、情感態(tài)度與價值觀:

對于直線來說它的導數(shù)就是它的斜率,學生會很自然的思考導數(shù)在函數(shù)圖像上是不是有很特殊的幾何意義。而且剛剛學過了圓錐曲線,學生對曲線的切線的概念也有了一些認識,基于以上學情分析,我確定下列教法:

學法:為了發(fā)揮學生的主觀能動性,提高學生的綜合能力,本節(jié)課采取了。

自主、合作、探究的學習方法。

教具:幾何畫板、幻燈片。

1.創(chuàng)設情境。

學生活動——問題系列。

問題1平面幾何中我們是怎樣判斷直線是否是圓的割線或切線的呢?

問題2如圖直線l是曲線c的切線嗎?

(1)與(2)與還有直線與雙曲線的位置關系。

問題3那么對于一般的曲線,切線該如何定義呢?

【設計意圖】:通過類比構建認知沖突。

學生活動——復習回顧。

導數(shù)的定義。

【設計意圖】:從理論和知識基礎兩方面為本節(jié)課作鋪墊。

2.探索求知。

學生活動——試驗探究。

問一;求導數(shù)的步驟是怎樣的?

第一步:求平均變化率;第二步:當趨近于0時,平均變化率無限趨近于的常數(shù)就是。

【設計意圖】:這是從“數(shù)”的角度描述導數(shù),為探究導數(shù)的幾何意義做準備。

問二;你能借助圖像說說平均變化率表示什么嗎?請在函數(shù)圖像中畫出來。

【設計意圖】:通過學生動手實踐得到平均變化率表示割線pq的斜率。

問三;在的過程中,你能描述一下割線pq的變化情況嗎?請在圖像中畫出來。

【設計意圖】:分別從“數(shù)”和“形”的角度描述的過程情況。從數(shù)的角度看,,q();從形的角度看,的過程中,q點向p點無限趨近,割線pq趨近于確定的位置,這個位置的直線叫做曲線在處的切線。

探究一:學生通過幾何畫板的演示觀察割線的變化趨勢,教師引導給出一般曲線的切線定義。

【設計意圖】:借助多媒體教學手段引導學生發(fā)現(xiàn)導數(shù)的幾何意義,使問題變得直觀,易于突破難點;學生在過程中,可以體會逼近的思想方法。能夠同時從數(shù)與形兩個角度強化學生對導數(shù)概念的理解。

問四;你能從上述過程中概括出函數(shù)在處的導數(shù)的幾何意義嗎?

【設計意圖】:引導學生發(fā)現(xiàn)并說出:,割線pq切線pt,所以割線。

pq的斜率切線pt的斜率。因此,=切線pt的斜率。

1、通過學生參加活動是否積極主動,能否與他人合作探索,對學生的學習過程評價;。

2、通過學生對方法的選擇,對學生的學習能力評價;。

3、通過練習、課后作業(yè),對學生的學習效果評價.

5、本節(jié)課設計目標力求使學生體會微積分的基本思想,感受近似與精確的統(tǒng)一,運動和靜止的統(tǒng)一,感受量變到質(zhì)變的轉化。希望利用這節(jié)課滲透辨證法的思想精髓.

高中數(shù)學說課稿篇四

期望是概率論和數(shù)理統(tǒng)計的重要概念之一,是反映隨機變量取值分布的特征數(shù),學習期望將為今后學習概率統(tǒng)計知識做鋪墊。同時,它在市場預測,經(jīng)濟統(tǒng)計,風險與決策等領域有著廣泛的應用,為今后學習數(shù)學及相關學科產(chǎn)生深遠的影響。

教學重點與難點。

重點:離散型隨機變量期望的概念及其實際含義。

難點:離散型隨機變量期望的實際應用。

[理論依據(jù)]本課是一節(jié)概念新授課,而概念本身具有一定的.抽象性,學生難以理解,因此把對離散性隨機變量期望的概念的教學作為本節(jié)課的教學重點。此外,學生初次應用概念解決實際問題也較為困難,故把其作為本節(jié)課的教學難點。

[知識與技能目標]。

通過實例,讓學生理解離散型隨機變量期望的概念,了解其實際含義。

會計算簡單的離散型隨機變量的期望,并解決一些實際問題。

[過程與方法目標]。

經(jīng)歷概念的建構這一過程,讓學生進一步體會從特殊到一般的思想,培養(yǎng)學生歸納、概括等合情推理能力。

通過實際應用,培養(yǎng)學生把實際問題抽象成數(shù)學問題的能力和學以致用的數(shù)學應用意識。

[情感與態(tài)度目標]。

通過創(chuàng)設情境激發(fā)學生學習數(shù)學的情感,培養(yǎng)其嚴謹治學的態(tài)度。在學生分析問題、解決問題的過程中培養(yǎng)其積極探索的精神,從而實現(xiàn)自我的價值。

引導發(fā)現(xiàn)法。

“授之以魚,不如授之以漁”,注重發(fā)揮學生的主體性,讓學生在學習中學會怎樣發(fā)現(xiàn)問題、分析問題、解決問題。

高中數(shù)學第三冊《離散型隨機變量的期望》。

高中數(shù)學說課稿篇五

奇偶性是人教a版第一章集合與函數(shù)概念的第3節(jié)函數(shù)的基本性質(zhì)的第2小節(jié)。

奇偶性是函數(shù)的一條重要性質(zhì),教材從學生熟悉的及入手,從特殊到一般,從具體到抽象,注重信息技術的應用,比較系統(tǒng)地介紹了函數(shù)的奇偶性。從知識結構看,它既是函數(shù)概念的拓展和深化,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)的基礎。所以,本節(jié)課起著承上啟下的重要作用。

2、學情分析。

從學生的認知基礎看,學生在初中已經(jīng)學習了軸對稱圖形和中心對稱圖形,并且有了必須數(shù)量的簡單函數(shù)的儲備。同時,剛剛學習了函數(shù)單調(diào)性,已經(jīng)積累了研究函數(shù)的基本方法與初步經(jīng)驗。

3、教學目標。

基于以上對教材和學生的分析,以及新課標理念,我設計了這樣的教學目標:

【知識與技能】。

1、能確定一些簡單函數(shù)的奇偶性。

2、能運用函數(shù)奇偶性的代數(shù)特征和幾何意義解決一些簡單的問題。

【過程與方法】。

經(jīng)歷奇偶性概念的構成過程,提高觀察抽象本事以及從特殊到一般的歸納概括本事。

【情感、態(tài)度與價值觀】。

經(jīng)過自主探索,體會數(shù)形結合的思想,感受數(shù)學的對稱美。

從課堂反應看,基本上到達了預期效果。

4、教學重點和難點。

重點:函數(shù)奇偶性的概念和幾何意義。

幾年的教學實踐證明,雖然函數(shù)奇偶性這一節(jié)知識點并不是很難理解,但知識點掌握不全面的學生容易出現(xiàn)下頭的錯誤。他們往往流于表面形式,只根據(jù)奇偶性的定義檢驗成立即可,而忽視了研究函數(shù)定義域的問題。所以,在介紹奇、偶函數(shù)的定義時,必須要揭示定義的隱含條件,從正反兩方面講清定義的內(nèi)涵和外延。所以,我把函數(shù)的奇偶性概念設計為本節(jié)課的重點。在這個問題上我除了注意概念的講解,還特意安排了一道例題,來加強本節(jié)課重點問題的講解。

難點:奇偶性概念的數(shù)學化提煉過程。

由于,學生看待問題還是靜止的、片面的,抽象概括本事比較薄弱,這對建構奇偶性的概念造成了必須的困難。所以我把奇偶性概念的數(shù)學化提煉過程設計為本節(jié)課的難點。

1、教法。

根據(jù)本節(jié)教材資料和編排特點,為了更有效地突出重點,突破難點,按照學生的認知規(guī)律,遵循教師為主導,學生為主體,訓練為主線的指導思想,采用以引導發(fā)現(xiàn)法為主,直觀演示法、類比法為輔。教學中,精心設計一個又一個帶有啟發(fā)性和思考性的問題,創(chuàng)設問題情景,誘導學生思考,使學生始終處于主動探索問題的積極狀態(tài),從而培養(yǎng)思維本事。從課堂反應看,基本上到達了預期效果。

2、學法。

讓學生在觀察一歸納一檢驗一應用的學習過程中,自主參與知識的發(fā)生、發(fā)展、構成的過程,從而使學生掌握知識。

具體的教學過程是師生互動交流的過程,共分六個環(huán)節(jié):設疑導入、觀圖激趣;指導觀察、構成概念;學生探索、領會定義;知識應用,鞏固提高;總結反饋;分層作業(yè),學以致用。下頭我對這六個環(huán)節(jié)進行說明。

(一)設疑導入、觀圖激趣。

由于本節(jié)資料相對獨立,專題性較強,所以我采用了開門見山導入方式,直接點明要學的資料,使學生的思維迅速定向,到達開始就明確目標突出重點的效果。

用多媒體展示一組圖片,使學生感受到生活中的對稱美。再讓學生觀察幾個特殊函數(shù)圖象。經(jīng)過讓學生觀察圖片導入新課,既激發(fā)了學生濃厚的學習興趣,又為學習新知識作好鋪墊。

(二)指導觀察、構成概念。

在這一環(huán)節(jié)中共設計了2個探究活動。

探究1、2數(shù)學中對稱的形式也很多,這節(jié)課我們就以函數(shù)和=︱x︱以及和為例展開探究。這個探究主要是經(jīng)過學生的自主探究來實現(xiàn)的,由于有圖片的鋪墊,絕大多數(shù)學生很快就說出函數(shù)圖象關于y軸(原點)對稱。之后學生填表,從數(shù)值角度研究圖象的這種特征,體此刻自變量與函數(shù)值之間有何規(guī)律引導學生先把它們具體化,再用數(shù)學符號表示。借助課件演示(令比較得出等式,再令,得到)讓學生發(fā)現(xiàn)兩個函數(shù)的對稱性反應到函數(shù)值上具有的特性,()然后經(jīng)過解析式給出嚴格證明,進一步說明這個特性對定義域內(nèi)任意一個都成立。最終給出偶函數(shù)(奇函數(shù))定義(板書)。

在這個過程中,學生把對圖形規(guī)律的感性認識,轉化成數(shù)量的規(guī)律性,從而上升到了理性認識,切實經(jīng)歷了一次從特殊歸納出一般的過程體驗。

(三)學生探索、領會定義。

探究3下列函數(shù)圖象具有奇偶性嗎?

設計意圖:深化對奇偶性概念的理解。強調(diào):函數(shù)具有奇偶性的前提條件是--定義域關于原點對稱。(突破了本節(jié)課的難點)。

(四)知識應用,鞏固提高。

在這一環(huán)節(jié)我設計了4道題。

例1確定下列函數(shù)的奇偶性。

選例1的第(1)及(3)小題板書來示范解題步驟,其他小題讓學生在下頭完成。

例1設計意圖是歸納出確定奇偶性的步驟:

(1)先求定義域,看是否關于原點對稱;

(2)再確定f(-x)=-f(x)還是f(-x)=f(x)。

例2確定下列函數(shù)的奇偶性:

例3確定下列函數(shù)的奇偶性:

例2、3設計意圖是探究一個函數(shù)奇偶性的可能情景有幾種類型?

例4(1)確定函數(shù)的奇偶性。

(2)如圖給出函數(shù)圖象的一部分,你能根據(jù)函數(shù)的奇偶性畫出它在y軸左邊的圖象嗎?

例4設計意圖加強函數(shù)奇偶性的幾何意義的應用。

在這個過程中,我重點關注了學生的推理過程的表述。經(jīng)過這些問題的解決,學生對函數(shù)的奇偶性認識、理解和應用都能提升很大一個高度,到達當堂消化吸收的效果。

(五)總結反饋。

在以上課堂實錄中充分展示了教法、學法中的互動模式,問題貫穿于探究過程的始終,切實體現(xiàn)了啟發(fā)式、問題式教學法的特色。

在本節(jié)課的最終對知識點進行了簡單回顧,并引導學生總結出本節(jié)課應積累的解題經(jīng)驗。知識在于積累,而學習數(shù)學更在于知識的應用經(jīng)驗的積累。所以提高知識的應用本事、增強錯誤的預見本事是提高數(shù)學綜合本事的很重要的策略。

(六)分層作業(yè),學以致用。

必做題:課本第36頁練習第1-2題。

選做題:課本第39頁習題1、3a組第6題。

思考題:課本第39頁習題1、3b組第3題。

設計意圖:面向全體學生,注重個人差異,加強作業(yè)的針對性,對學生進行分層作業(yè),既使學生掌握基礎知識,又使學有余力的學生有所提高,進一步到達不一樣的人在數(shù)學上得到不一樣的發(fā)展。

高中數(shù)學說課稿篇六

導數(shù)是微積分的核心概念之一,它為研究函數(shù)提供了有效的方法. 在前面幾節(jié)課里學生對導數(shù)的概念已經(jīng)有了充分的認識,本節(jié)課教材從形的角度即割線入手,用形象直觀的“逼近”方法定義了切線,獲得導數(shù)的幾何意義,更有利于學生理解導數(shù)概念的本質(zhì)內(nèi)涵. 這節(jié)課可以利用幾何畫板進行動畫演示,讓學生通過觀察、思考、發(fā)現(xiàn)、思維、運用形成完整概念. 通過本節(jié)的學習,可以幫助學生更好的體會導數(shù)是研究函數(shù)的單調(diào)性、變化快慢等性質(zhì)最有效的工具,是本章的關鍵內(nèi)容。

2、教學的重點、難點、關鍵

教學重點:導數(shù)的幾何意義、切線方程的求法以及“數(shù)形結合,逼近”的思想方法。

教學難點:理解導數(shù)的幾何意義的本質(zhì)內(nèi)涵

1) 從割線到切線的過程中采用的逼近方法;

2) 理解導數(shù)的概念,將多方面的意義聯(lián)系起來,例如,導數(shù)反映了函數(shù)f(x)在點x附近的變化快慢,導數(shù)是曲線上某點切線的斜率,等等.

根據(jù)新課程標準的要求、學生的認知水平,確定教學目標如下:

1、知識與技能 :

通過實驗探求理解導數(shù)的幾何意義,理解曲線在一點的切線的概念,會求簡單函數(shù)在某點的切線方程。

過程與方法:

通過逼近、數(shù)形結合思想的具體運用,使學生達到思維方式的遷移,了解科學的思維方法。

3、情感態(tài)度與價值觀:

對于直線來說它的導數(shù)就是它的斜率,學生會很自然的思考導數(shù)在函數(shù)圖像上是不是有很特殊的幾何意義。而且剛剛學過了圓錐曲線,學生對曲線的切線的概念也有了一些認識,基于以上學情分析,我確定下列教法:

學法:為了發(fā)揮學生的主觀能動性,提高學生的綜合能力,本節(jié)課采取了

自主 、合作、探究的學習方法。

教具: 幾何畫板、幻燈片

1.創(chuàng)設情境

學生活動——問題系列

問題1 平面幾何中我們是怎樣判斷直線是否是圓的割線或切線的呢?

問題2 如圖直線l是曲線c的切線嗎?

(1)與 (2)與 還有直線與雙曲線的位置關系

問題3 那么對于一般的曲線,切線該如何定義呢?

【設計意圖】:通過類比構建認知沖突。

學生活動——復習回顧

導數(shù)的定義

【設計意圖】:從理論和知識基礎兩方面為本節(jié)課作鋪墊。

2.探索求知

學生活動——試驗探究

問一;求導數(shù)的步驟是怎樣的?

第一步:求平均變化率;第二步:當趨近于0時,平均變化率無限趨近于的常數(shù)就是。

【設計意圖】:這是從“數(shù)”的角度描述導數(shù),為探究導數(shù)的幾何意義做準備。

問二;你能借助圖像說說平均變化率表示什么嗎?請在函數(shù)圖像中畫出來。

【設計意圖】:通過學生動手實踐得到平均變化率表示割線pq的斜率。

問三;在的過程中,你能描述一下割線pq的變化情況嗎?請在圖像中畫出來。

【設計意圖】:分別從“數(shù)”和“形”的角度描述的過程情況。從數(shù)的角度看,,q();從形的角度看, 的過程中,q點向p點無限趨近,割線pq趨近于確定的位置,這個位置的直線叫做曲線在 處的切線。

探究一:學生通過幾何畫板的演示觀察割線的變化趨勢,教師引導給出一般曲線的切線定義。

【設計意圖】: 借助多媒體教學手段引導學生發(fā)現(xiàn)導數(shù)的幾何意義,使問題變得直觀,易于突破難點;學生在過程中,可以體會逼近的思想方法。能夠同時從數(shù)與形兩個角度強化學生對導數(shù)概念的理解。

問四;你能從上述過程中概括出函數(shù)在處的導數(shù)的幾何意義嗎?

【設計意圖】:引導學生發(fā)現(xiàn)并說出:,割線pq切線pt,所以割線

pq的斜率切線pt的斜率。因此,=切線pt的斜率。

1、通過學生參加活動是否積極主動,能否與他人合作探索,對學生的學習過程評價;

2、通過學生對方法的選擇,對學生的學習能力評價;

3、通過練習、課后作業(yè),對學生的學習效果評價.

5、本節(jié)課設計目標力求使學生體會微積分的基本思想,感受近似與精確的統(tǒng)一,運動和靜止的統(tǒng)一,感受量變到質(zhì)變的轉化。希望利用這節(jié)課滲透辨證法的思想精髓.

高中數(shù)學說課稿篇七

二面角是我們?nèi)粘I钪薪?jīng)常見到的、很普通的一個圖形。“二面角”是新編教材《數(shù)學》第二冊(下a)中的內(nèi)容,它在學生學過空間中異面角、線面角之后,又要重點研究的一種空間的角,它也是學生進一步研究多面體和旋轉體的基礎。因此,它起著承上啟下的作用。同時,通過本節(jié)課的學習也可以培養(yǎng)學生的空間想象能力和邏輯思維能力,為培養(yǎng)學生的創(chuàng)新意識和創(chuàng)新能力提供了一個良好的契機。

2.教學目標。

(1)知識目標:使學生掌握二面角的概念,二面角的平面角的定義、作法以及這些知識的初步應用。

(2)能力目標:培養(yǎng)學生的空間想象能力、邏輯思維能力、知識遷移能力及運用數(shù)學知識和數(shù)學方法觀察、研究現(xiàn)實現(xiàn)象的能力。

(3)德育目標:通過對實際問題的分析、探究,激發(fā)學生的學習興趣,并讓學生明白:數(shù)學和生活是密不可分的。

(4)情感目標:在平等的教學氛圍中,通過學生之間、師生之間的交流、合作和評價,拉近學生之間、師生之間的情感距離。

3.重點、難點及關鍵。

重點:二面角的平面角的定義及其作法。

難點:面角的平面角的作法。

關鍵:求作二面角的平面角。

二、教學方法和手段。

培養(yǎng)學生數(shù)學素質(zhì),首先數(shù)學課堂教學要素質(zhì)化,即在課堂教學過程中,加強知識發(fā)生過程的教學,充分調(diào)動學生思維的主動性、積極性;有效地滲透數(shù)學思想方法,發(fā)展學生個性品質(zhì),從而達到提高學生整體的數(shù)學素養(yǎng)的目的。根據(jù)這樣的原則和所要完成的教學目標,我采用如下的教學方法和手段:

(1)教學方法:觀察發(fā)現(xiàn)、啟發(fā)引導、探索相結合的教學方法。啟發(fā)、引導學生積極的思考并對學生的思維進行調(diào)控,幫助學生優(yōu)化思維過程;在此基礎上,提供給學生交流的機會,學生學會對自己的數(shù)學思想進行組織和澄清,并能清楚地、準確地表達自己的數(shù)學思想;能通過對其他人的思維和策略的考察擴展自己的數(shù)學知識和使用數(shù)學語言的能力。學生會自覺地、主動地、積極地學習。

(2)教學手段:利用多媒體教學手段。多媒體以聲音、動畫等多種形式強化對學生感官的刺激,這一點是粉筆和黑板所不能比擬的,采用這種形式,可以極大提高學生的學習興趣,加大一堂課的信息容量,使教學目標體現(xiàn)的更完美。

三、學法指導:觀察分析、猜想證明及類比聯(lián)想是學法指導的重點。讓學生觀察、思考后,總結、概括、歸納的知識更有利于學生掌握;為了加深知識理解、掌握和更靈活地運用,運用類比聯(lián)想去主動的發(fā)現(xiàn)問題、解決問題,從而更系統(tǒng)地掌握所學知識,形成新的認知結構和知識網(wǎng)絡,讓學生真正地體會到在問題解決中學習,在交流中學習。這樣,可以增進熱愛數(shù)學的情感,應用數(shù)學的自信心和形成新的學習動力。

高中數(shù)學說課稿篇八

1、地位、作用和特點:

《》是高中數(shù)學課本第冊(修)的第章“”的第節(jié)內(nèi)容,高中數(shù)學課本說課稿。

本節(jié)是在學習了之后編排的。通過本節(jié)課的學習,既可以對的知識進一步鞏固和深化,又可以為后面學習打下基礎,所以是本章的重要內(nèi)容。此外,《》的知識與我們?nèi)粘I?、生產(chǎn)、科學研究有著密切的聯(lián)系,因此學習這部分有著廣泛的現(xiàn)實意義。

教學目標:

根據(jù)《教學大綱》的要求和學生已有的知識基礎和認知能力,確定以下教學目標:

(1)知識目標:a、b、c。

(2)能力目標:a、b、c。

(3)德育目標:a、b。

教學的重點和難點:

(1)教學重點:

(2)教學難點:

基于上面的教材分析,我根據(jù)自己對研究性學習“啟發(fā)式”教學模式和新課程改革的理論認識,結合本校學生實際,主要突出了幾個方面:一是創(chuàng)設問題情景,充分調(diào)動學生求知欲,并以此來激發(fā)學生的探究心理。二是運用啟發(fā)式教學方法,就是把教和學的各種方法綜合起來統(tǒng)一組織運用于教學過程,以求獲得最佳效果。另外還注意獲得和交換信息渠道的綜合、教學手段的綜合和課堂內(nèi)外的綜合。并且在整個教學設計盡量做到注意學生的心理特點和認知規(guī)律,觸發(fā)學生的思維,使教學過程真正成為學生的學習過程,以思維教學代替單純的記憶教學。三是注重滲透數(shù)學思考方法(聯(lián)想法、類比法、數(shù)形結合等一般科學方法)。讓學生在探索學習知識的過程中,領會常見數(shù)學思想方法,培養(yǎng)學生的探索能力和創(chuàng)造性素質(zhì)。四是注意在探究問題時留給學生充分的時間,以利于開放學生的思維。當然這就應在處理教學內(nèi)容時能夠做到葉老師所說“教就是為了不教”。因此,擬對本節(jié)課設計如下教學程序:

導入新課新課教學。

反饋發(fā)展。

學生學習的過程實際上就是學生主動獲取、整理、貯存、運用知識和獲得學習能力的過程,因此,我覺得在教學中,指導學生學習時,應盡量避免單純地、直露地向?qū)W生灌輸某種學習方法。有效的能被學生接受的學法指導應是滲透在教學過程中進行的,是通過優(yōu)化教學程序來增強學法指導的目的性和實效性。在本節(jié)課的教學中主要滲透以下幾個方面的學法指導。

1、培養(yǎng)學生學會通過自學、觀察、實驗等方法獲取相關知識,使學生在探索研究過程中分析、歸納、推理能力得到提高。

本節(jié)教師通過列舉具體事例來進行分析,歸納出,并依。

據(jù)此知識與具體事例結合、推導出,這正是一個分析和推理的全過程。

演示,創(chuàng)設探索規(guī)律的情境,引導學生以可靠的事實為基礎,經(jīng)過抽象思維揭示內(nèi)在規(guī)律,從而使學生領悟到把可靠的事實和深刻的理論思維結合起來的`特點。

3、讓學生在探索性實驗中自己摸索方法,觀察和分析現(xiàn)象,從而發(fā)現(xiàn)“新”的問題或探索出“新”的規(guī)律。從而培養(yǎng)學生的發(fā)散思維和收斂思維能力,激發(fā)學生的創(chuàng)造動力。在實踐中要盡可能讓學生多動腦、多動手、多觀察、多交流、多分析;老師要給學生多點撥、多啟發(fā)、多激勵,不斷地尋找學生思維和操作上的閃光點,及時總結和推廣。

4、在指導學生解決問題時,引導學生通過比較、猜測、嘗試、質(zhì)疑、發(fā)現(xiàn)等探究環(huán)節(jié)選擇合適的概念、規(guī)律和解決問題方法,從而克服思維定勢的消極影響,促進知識的正向遷移。如教師引導學生對比中,蘊含的本質(zhì)差異,從而擺脫知識遷移的負面影響。這樣,既有利于學生養(yǎng)成認真分析過程、善于比較的好習慣,又有利于培養(yǎng)學生通過現(xiàn)象發(fā)掘知識內(nèi)在本質(zhì)的能力。

(一)、課題引入:

教師創(chuàng)設問題情景(創(chuàng)設情景:a、教師演示實驗。b、使用多媒體模擬一些比較有趣、與生活實踐比較有關的事例。c、講述數(shù)學科學史上的有關情況。)激發(fā)學生的探究欲望,引導學生提出接下去要研究的問題。

(二)、新課教學:

1、針對上面提出的問題,設計學生動手實踐,讓學生通過動手探索有關的知識,并引導學生進行交流、討論得出新知,并進一步提出下面的問題。

2、組織學生進行新問題的實驗方法設計—這時在設計上最好是有對比性、數(shù)學方法性的設計實驗,指導學生實驗、通過多媒體的輔助,顯示學生的實驗數(shù)據(jù),模擬強化出實驗情況,由學生分析比較,歸納總結出知識的結構。

(三)、實施反饋:

1、課堂反饋,遷移知識(最好遷移到與生活有關的例子)。讓學生分析有關的問題,實現(xiàn)知識的升華、實現(xiàn)學生的再次創(chuàng)新。

2、課后反饋,延續(xù)創(chuàng)新。通過課后練習,學生互改作業(yè),課后研實驗,實現(xiàn)課堂內(nèi)外的綜合,實現(xiàn)創(chuàng)新精神的延續(xù)。

在教學中我把黑板分為三部分,把知識要點寫在左側,中間知識推導過程,右邊實例應用。

以上是我對《》這節(jié)教材的認識和對教學過程的設計。在整個課堂中,我引導學生回顧前面學過的知識,并把它運用到對的認識,使學生的認知活動逐步深化,既掌握了知識,又學會了方法。

總之,對課堂的設計,我始終在努力貫徹以教師為主導,以學生為主體,以問題為基礎,以能力、方法為主線,有計劃培養(yǎng)學生的自學能力、觀察和實踐能力、思維能力、應用知識解決實際問題的能力和創(chuàng)造能力為指導思想。并且能從各種實際出發(fā),充分利用各種教學手段來激發(fā)學生的學習興趣,體現(xiàn)了對學生創(chuàng)新意識的培養(yǎng)。

高中數(shù)學說課稿篇九

1.教材所處的地位和作用:

本節(jié)內(nèi)容在全書和章節(jié)中的作用是:《》是中數(shù)學教材第冊第章第節(jié)內(nèi)容。在此之前學生已學習了基礎,這為過渡到本節(jié)的學習起著鋪墊作用。本節(jié)內(nèi)容是在中,占據(jù)的地位。以及為其他學科和今后的學習打下基礎。

2.教育教學目標:

根據(jù)上述教材分析,考慮到學生已有的認知結構心理特征,制定如下教學目標:

(1)知識目標:

(2)能力目標:通過教學初步培養(yǎng)學生分析問題,解決實際問題,讀圖分析,收集處理信息,團結協(xié)作,語言表達能力以及通過師生雙邊活動,初步培養(yǎng)學生運用知識的能力,培養(yǎng)學生加強理論聯(lián)系實際的能力,(3)情感目標:通過的教學引導學生從現(xiàn)實的生活經(jīng)歷與體驗出發(fā),激發(fā)學生學習興趣。

3.重點,難點以及確定依據(jù):

下面,為了講清重難上點,使學生能達到本節(jié)課設定的目標,再從教法和學法上談談:

1.教學手段:

如何突出重點,突破難點,從而實現(xiàn)教學目標。在教學過程中擬計劃進行如下操作:教學方法?;诒竟?jié)課的特點:應著重采用的教學方法。

2.教學方法及其理論依據(jù):堅持“以學生為主體,以教師為主導”的原則,根據(jù)學生的心理發(fā)展規(guī)律,采用學生參與程度高的學導式討論教學法。在學生看書,討論的基礎上,在老師啟發(fā)引導下,運用問題解決式教法,師生交談法,圖像信號法,問答式,課堂討論法。在采用問答法時,特別注重不同難度的問題,提問不同層次的學生,面向全體,使基礎差的學生也能有表現(xiàn)機會,培養(yǎng)其自信心,激發(fā)其學習熱情。有效的開發(fā)各層次學生的潛在智能,力求使學生能在原有的基礎上得到發(fā)展。同時通過課堂練習和課后作業(yè),啟發(fā)學生從書本知識回到社會實踐。提供給學生與其生活和周圍世界密切相關的數(shù)學知識,學習基礎性的知識和技能,在教學中積極培養(yǎng)學生學習興趣和動機,明確的學習目的,老師應在課堂上充分調(diào)動學生的學習積極性,激發(fā)來自學生主體的最有力的動力。

3.學情分析:(說學法)。

(2)知識障礙上:知識掌握上,學生原有的知識,許多學生出現(xiàn)知識遺忘,所以應全面系統(tǒng)的去講述;學生學習本節(jié)課的知識障礙,知識學生不易理解,所以教學中老師應予以簡單明白,深入淺出的分析。

最后我來具體談談這一堂課的教學過程:

4.教學程序及設想:

(1)由引入:把教學內(nèi)容轉化為具有潛在意義的問題,讓學生產(chǎn)生強烈的問題意識,使學生的整個學習過程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過程。在實際情況下學習可以使學生利用已有的知識與經(jīng)驗,同化和索引出當肖學習的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問題情境中。

(2)由實例得出本課新的知識點。

(3)講解例題。在講例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進行概括,有利于學生的思維能力。

(4)能力訓練。課后練習使學生能鞏固羨慕自覺運用所學知識與解題思想方法。

(5)總結結論,強化認識。知識性的內(nèi)容小結,可把課堂教學傳授的知識盡快化為學生的素質(zhì),數(shù)學思想方法的小結,可使學生更深刻地理解數(shù)學思想方法在解題中的地位和應用,并且逐步培養(yǎng)學生良好的個性品質(zhì)目標。

(6)變式延伸,進行重構,重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯(lián),累積,加工,從而達到舉一反三的效果。

(7)板書。

(8)布置作業(yè)。

(一)課堂結構:復習提問,導入講授課,課堂練習,鞏固新課,布置作業(yè)等五部分。

集合這章內(nèi)容,教學參考書上安排的課時為五課時,我們的導學案也是安排五課時,實際教學時,由于對學生的實際情況估計不足,第一課時的導學案用了兩課時才完成。集合這一章的特點是概念不多,但這章所涉及到的內(nèi)容很廣,學生學習本章內(nèi)容時,不僅要理解本章的概念,還要理解與本章內(nèi)容相關聯(lián)的其他內(nèi)容,這些內(nèi)容有初中學習過的內(nèi)容、有生活中的方方面面的相關知識,再加上高中學習方法與初中不同,邏輯思維能力要求較高,因此學生感覺學起來比較困難。針對這種情況,我在實際教學時,首先要求學生準確理解概念,如:集合的元素具有三個性質(zhì):確定性、互異性、無序性。集合的關系、運算等都是從元素的角度定義的,所以解集合問題時,教會學生對元素的性質(zhì)進行分析,反復訓練,讓學生通過實例體會這三個性質(zhì)。

第二,掌握相關的符號語言、venn圖,正確使用列舉法、描述法表示集合,特別要注意用描述法表示集合時,集合中的元素是什么,這是一個教學難點。第二個難點是集合的運算—交集和并集。突破難點充分運用數(shù)形結合思想,集合間的關系和運算,以數(shù)形結合思想為指導,借助圖形思考,可以使各集合間的關系直觀明了,使抽象的集合運算建立在直觀的基礎上,使解題思路清晰明朗,直觀簡捷,有利于問題的解決。

第三,指導學生理解并掌握自然語言、符號語言、圖形語言這三種語言,靈活準確地進行語言轉換,可以幫助學生提高分析問題,解決問題的能力。

第四,集合問題涉及到的其他內(nèi)容,遇到了講透,不拓展。

您可能關注的文檔